タグ「不等式」の検索結果

27ページ目:全633問中261問~270問を表示)
早稲田大学 私立 早稲田大学 2014年 第3問
$a$は$1$より大きい実数とする.

(1)次の不等式が成り立つことを証明せよ.
\[ \sum_{k=0}^{n-1} \left( a^{\frac{k+1}{n}}-a^{\frac{k}{n}} \right) \frac{1}{a^{\frac{k+1}{n}}}<\int_1^a \frac{dx}{x}<\sum_{k=0}^{n-1} \left( a^{\frac{k+1}{n}}-a^{\frac{k}{n}} \right) \frac{1}{a^{\frac{k}{n}}} \]
(2)次の等式が成り立つことを証明せよ.
\[ \lim_{n \to \infty} \sum_{k=0}^{n-1} \left( a^{\frac{k+1}{n}}-a^{\frac{k}{n}} \right) \frac{1}{a^{\frac{k+1}{n}}}=\int_1^a \frac{dx}{x}=\lim_{n \to \infty} \sum_{k=0}^{n-1} \left( a^{\frac{k+1}{n}}-a^{\frac{k}{n}} \right) \frac{1}{a^{\frac{k}{n}}} \]
北里大学 私立 北里大学 2014年 第1問
次の$[ ]$にあてはまる答を求めよ.

(1)$0<x<1$とする.$\displaystyle x^2+\frac{1}{x^2}=6$のとき,$\displaystyle x+\frac{1}{x}=[ア]$,$x^3=[イ]$である.
(2)$a,\ b$は正の定数とする.$2$次方程式$x^2+ax+b=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2+(a^2-4a)x+a-b=0$が$2$つの数$\alpha+3$,$\beta+3$を解とするとき,$a,\ b$の値は$a=[ウ]$,$b=[エ]$である.
(3)$0 \leqq \theta<2\pi$のとき,不等式$\sin \theta-\sqrt{3} \cos \theta \geqq 1$が成り立つ$\theta$の範囲は$[オ]$である.$[オ]$の範囲で$2 \cos 2\theta+3 \sin \theta$は最大値$[カ]$,最小値$[キ]$をとる.
(4)正十六角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_{16}$の$16$個の頂点のうちの$3$個を頂点とする三角形の総数は$[ク]$である.これらの三角形のうち,直角三角形の個数は$[ケ]$個であり,鈍角三角形の個数は$[コ]$個である.
北里大学 私立 北里大学 2014年 第1問
つぎの$[ ]$にあてはまる答を記せ.

(1)空間に$4$点$\mathrm{A}(5,\ 1,\ 3)$,$\mathrm{B}(4,\ 4,\ 3)$,$\mathrm{C}(2,\ 3,\ 5)$,$\mathrm{D}(4,\ 1,\ 3)$がある.

(i) $\overrightarrow{\mathrm{DA}}$と$\overrightarrow{\mathrm{DB}}$のなす角を$\theta$とおくとき,$\theta=[ア]$である.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(ii) 四面体$\mathrm{ABCD}$の体積は$[イ]$である.

(2)$a$を実数とする.$x$についての$2$次方程式$x^2-2x \log_2 \{(a+1)(a-5)\}+4=0$の解の$1$つが$2$であるとき,$a$の値は$[ウ]$である.また,この$2$次方程式が実数解をもたないような$a$の値の範囲は$[エ]$である.
(3)不等式$\displaystyle x^2+2x \leqq y \leqq 2x+2 \leqq \frac{4}{3}y$の表す領域の面積は$[オ]$である.また,この領域上の点$(x,\ y)$のうち,$5x-3y$が最小となるような点の座標は$[カ]$である.
(4)$n$は正の整数とする.階段を$1$度に$1$段,$2$段または$3$段登る.このとき,$n$段からなる階段の登り方の総数を$a_n$とする.例えば,$a_1=1$であり,$a_2=2$である.

(i) $a_3$の値は$[キ]$である.
(ii) $a_4$の値は$[ク]$である.
(iii) $a_{10}$の値は$[ケ]$である.

(5)$\displaystyle 0<t<\frac{\pi}{2}$とする.曲線$y=\sin x$上の点$\displaystyle \mathrm{P} \left( t+\frac{\pi}{2},\ \sin \left( t+\frac{\pi}{2} \right) \right)$における法線を$\ell$とおく.直線$\displaystyle x=\frac{\pi}{2}$を$m$とおき,法線$\ell$と直線$m$の交点を$\mathrm{Q}$とする.

(i) $\displaystyle t=\frac{\pi}{3}$のとき,点$\mathrm{Q}$の座標は$[コ]$である.
(ii) 曲線$y=\sin x$と法線$\ell$および直線$m$で囲まれた部分の面積を$S(t)$とするとき,極限$\displaystyle \lim_{t \to +0} \frac{S(t)}{t}$の値は$[サ]$である.
安田女子大学 私立 安田女子大学 2014年 第3問
次の問いに答えよ.

(1)次の不等式の表す領域を図示せよ.ただし,作図は,定規やコンパスは使わず,全てフリーハンドで行い,該当領域には斜線を入れよ.
\[ (x-y-1)(x+y+1)>0 \]
(2)下の図の$2$つの直線と$1$つの円で囲まれた斜線部分の領域(境界線は含まない)を$1$つの不等式で表せ.
(図は省略)
安田女子大学 私立 安田女子大学 2014年 第1問
次の問いに答えよ.

(1)$(xz+y)^2-(x+yz)^2$を因数分解せよ.
(2)$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={60}^\circ$,$\displaystyle \sin B=\frac{1}{3}$,$\mathrm{AB}=6$のとき,$\mathrm{AC}$を求めよ.
(3)正十五角形の内角の和を求めよ.
(4)不等式$|x^2-7x|<x-4$を解け.
安田女子大学 私立 安田女子大学 2014年 第1問
次の問いに答えよ.

(1)$(xz+y)^2-(x+yz)^2$を因数分解せよ.
(2)$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={60}^\circ$,$\displaystyle \sin B=\frac{1}{3}$,$\mathrm{AB}=6$のとき,$\mathrm{AC}$を求めよ.
(3)正十五角形の内角の和を求めよ.
(4)不等式$\sin^4 \theta-\sin^2 \theta \geqq 0$を解け.ただし$0^\circ \leqq \theta<{180}^\circ$とする.
(5)$\sqrt{28-3 \sqrt{12}}$の整数部分を求めよ.
吉備国際大学 私立 吉備国際大学 2014年 第1問
以下の問いに答えよ.

(1)$x^2-2xy+3x-4y+2$を因数分解せよ.
(2)$\displaystyle x=\frac{2}{\sqrt{3}+1}$のとき$x^2+2x-4$の値を求めよ.
(3)$10$個の製品の中に$3$個の不良品が含まれている中から$3$個の製品を同時に選び出すとき,不良品が少なくとも$1$個含まれる確率を求めよ.
(4)連続する$7$個の自然数で小さい方の$4$つの数の平方の和が,大きい方の$3$つの数の平方の和に等しくなるとき,$7$つの自然数をすべて求めよ.
(5)不等式$x^2+4x-2<0$を解け.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2014年 第4問
$a,\ b$は$1$と異なる正の実数で,$ab \neq 1$,$\displaystyle \frac{a}{b} \neq 1$を満たすものとする.
\[ \text{不等式} \quad \log_{ab}a<\log_{\frac{a}{b}} ab \quad \cdots\cdots① \]
について,以下の問いに答えなさい.

(1)$X=\log_a b$とおくとき,$①$を$X$についての不等式で表すと,
\[ \frac{[$1$]}{(1+X)(1-X)}<0 \]
となる.$[$1$]$にあてはまる適切な式を求めなさい.
(2)不等式$①$を満たす点$(a,\ b)$の存在する領域を,座標平面上に図示しなさい.
獨協医科大学 私立 獨協医科大学 2014年 第1問
次の問いに答えなさい.

(1)$a$を正の定数とし,$x$についての$2$つの不等式
$\log_3 (x+2a)+\log_3 (x+3a)<\log_3 10ax \cdots\cdots①$
$\log_3 (3x-4)+\log_3 (3x+2)<2 \log_9 (6x-5)+1 \cdots\cdots②$
を考える.
$①$の解は
\[ [ア]a<x<[イ]a \]
である.
$②$の解は
\[ \frac{[ウ]}{[エ]}<x<\frac{[オ]}{[カ]} \]
である.
$①,\ ②$をともに満たす実数$x$が存在するとき,$a$のとり得る値の範囲は
\[ \frac{[キ]}{[ク]}<a<\frac{[ケ]}{[コ]} \]
である.
(2)放物線$\displaystyle C:y=\frac{1}{2}x^2$上に$2$点$\mathrm{P}$,$\mathrm{Q}$がある.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p,\ q$としたとき,$p,\ q$は$q<p$を満たす整数で,$p>0$,$p+q$は正の偶数とする.
また,点$\mathrm{P}$における放物線$C$の接線を$\ell$,$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線を$m$とし,直線$\ell,\ m$が$x$軸の正の向きとなす角をそれぞれ$\displaystyle \alpha,\ \beta \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$,$2$直線$\ell,\ m$のなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.
$p=5,\ q=1$のとき
\[ \tan \alpha=[サ],\quad \tan \beta=[シ] \]
であり
\[ \tan \theta=\frac{1}{[ス]} \]
である.
また,$\displaystyle \tan \theta=\frac{1}{7}$を満たす整数$p,\ q$の組$(p,\ q)$をすべてあげると,
\[ (p,\ q)=([セ],\ [ソ]),\ ([タチ],\ [ツテ]),\ ([トナ],\ [ニヌネ]) \]
である.ただし,$[セ]<[タチ]<[トナ]$とする.
北海学園大学 私立 北海学園大学 2014年 第1問
次の各問いに答えよ.

(1)$2$つの不等式$x^2-x-6<0$と$x^2-x-2>0$を同時に満たす$x$の値の範囲を求めよ.
(2)放物線$y=x^2-2x+2$を$x$軸に関して対称移動した後に,$x$軸方向に$3$,$y$軸方向に$4$だけ平行移動した放物線の頂点の座標を求めよ.
(3)$0^\circ \leqq \theta \leqq {90}^\circ$のとき,$\displaystyle \frac{2}{1+\tan^2 \theta}+4 \cos \theta-2 \sin^2 \theta-1=0$を満たす$\theta$の値を求めよ.
スポンサーリンク

「不等式」とは・・・

 まだこのタグの説明は執筆されていません。