タグ「不等式」の検索結果

23ページ目:全633問中221問~230問を表示)
九州工業大学 国立 九州工業大学 2014年 第4問
関数$\displaystyle f(x)=-\tan x \left( 0 \leqq x \leqq \frac{\pi}{4} \right)$,$\displaystyle g(x)=\sin 2x \left( 0 \leqq x \leqq \frac{\pi}{4} \right)$について,次に答えよ.

(1)不定積分$\displaystyle \int \tan x \, dx$,$\displaystyle \int \tan^2 x \, dx$を求めよ.
(2)$b>0$とする.曲線$y=g(x)$および$3$直線$y=-b$,$x=0$,$\displaystyle x=\frac{\pi}{4}$で囲まれた部分を直線$y=-b$のまわりに$1$回転してできる立体の体積$V_1$を$b$を用いて表せ.
(3)$\displaystyle 0 \leqq x \leqq \frac{\pi}{4}$のとき,不等式$f(x)+g(x) \geqq 0$を示せ.
(4)$2$曲線$y=f(x)$,$y=g(x)$および直線$\displaystyle x=\frac{\pi}{4}$で囲まれた部分を直線$\displaystyle y=-\frac{1}{\sqrt{3}}$のまわりに$1$回転してできる立体の体積$V_2$を求めよ.
岐阜大学 国立 岐阜大学 2014年 第5問
数列$\{a_n\}$を
\[ a_1=\frac{3}{4},\quad a_{n+1}=1-\frac{1}{4a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.以下の問に答えよ.

(1)$a_2,\ a_3,\ a_4,\ a_5,\ a_6$を求めよ.また,それより一般項$a_n$を推定せよ.
(2)数学的帰納法により,$(1)$の一般項の推定が正しいことを証明せよ.
(3)$n$を正の整数とする.すべての実数$x$に対して,不等式
\[ a_nx^2+x+1 \geqq a_{n+1} \]
が成り立つことを示せ.
(4)$n$を正の整数とする.すべての実数$x$に対して,不等式
\[ x^{2n}+x^{2n-1}+x^{2n-2}+\cdots +x^2+x+1 \geqq a_n \]
が成り立つことを示せ.
東京海洋大学 国立 東京海洋大学 2014年 第2問
次の不等式$①$,$②$,$③$を同時に満たす領域を$A$,不等式$①$,$②$,$③$,$④$を同時に満たす領域を$B$とする.
\[ \begin{array}{lr}
y \leqq 2(x+1)(9-x) & \cdots\cdots① \\
y \geqq -3x+18 & \cdots\cdots② \\
y \geqq 0 & \cdots\cdots③ \\
x \leqq a & \cdots\cdots④
\end{array} \]
ただし,$0<a<6$とする.このとき,次の問に答えよ.

(1)領域$A$の面積を求めよ.
(2)領域$B$の面積が領域$A$の面積の$\displaystyle \frac{1}{4}$倍になるときの$a$の値を求めよ.
山形大学 国立 山形大学 2014年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2-3x+4=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\beta}{\alpha-1}+\frac{\alpha}{\beta-1}$の値を求めよ.
(2)$x$が自然数のとき,不等式$(\sqrt{x}-\sqrt{2})^2<1$を満たす$x$の値をすべて求めよ.
(3)$\triangle \mathrm{ABC}$の内部の点$\mathrm{P}$について,$4 \overrightarrow{\mathrm{PA}}+3 \overrightarrow{\mathrm{PB}}+5 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}}$が成り立っている.$\triangle \mathrm{ABC}$の面積が$1$であるとき,$\triangle \mathrm{PAB}$の面積を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第2問
$3$つの不等式
\[ \log_y (x^2-3x+2) \leqq 1,\quad 0<x \leqq 3,\quad 0<y \leqq 2 \]
を同時にみたす領域を$xy$平面上に図示せよ.さらに,点$(x,\ y)$がこの領域内を動くとき,$3x+4y$の最大値とそれを与える$x,\ y$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第4問
次の問いに答えよ.

(1)$0 \leqq \theta \leqq 2\pi$とする.関数
\[ y=2 \sin 2\theta-2 \sqrt{2}(\sin \theta+\cos \theta)+2 \]
について,$t=\sin \theta+\cos \theta$とおいて,$y$を$t$の関数で表せ.また,$y$の最大値,最小値とそのときの$\theta$の値を求めよ.
(2)$3$つの不等式
\[ \log_y (x^2-3x+2) \leqq 1,\quad 0<x \leqq 3,\quad 0<y<1 \]
を同時にみたす領域を$xy$平面上に図示せよ.
福井大学 国立 福井大学 2014年 第4問
以下の問いに答えよ.

(1)$p>1$,$q>1$のとき,不等式$p+q<pq+1$を証明せよ.
(2)$a>1$,$b>1$のとき,不等式$\sqrt{a+b-1}<\sqrt{a}+\sqrt{b}-1$を証明せよ.
(3)$a>1$,$b>1$,$c>1$のとき,不等式$\sqrt{a+b+c-2}<\sqrt{a}+\sqrt{b}+\sqrt{c}-2$を証明せよ.
宇都宮大学 国立 宇都宮大学 2014年 第4問
座標平面において,不等式$y \geqq x^2$の表す領域を$D$とし,$D$内の点$(a,\ b)$に対して連立不等式
\[ y \geqq x^2,\quad x \geqq a,\quad b \geqq y \]
の表す領域を$E(a,\ b)$とする.このとき,次の問いに答えよ.

(1)領域$E(a,\ b)$の面積$S$を$a$と$b$を用いて表せ.
(2)曲線$4y=(x+1)^2$上の点$(2t-1,\ t^2)$が領域$D$内を動くとき,実数$t$の取り得る値の範囲を求めよ.
(3)$(2)$で求めた範囲の$t$に対して,領域$E(2t-1,\ t^2)$の面積を$f(t)$とするとき,関数$f(t)$を$t$の式で表せ.
(4)$(3)$で定めた関数$f(t)$の最大値を求めよ.
徳島大学 国立 徳島大学 2014年 第3問
$n$枚のカードに$1$から$n$までの自然数がひとつずつ書かれている.異なるカードには異なる数が書かれている.これら$n$枚のカードを横一列に並べて,左端から$i$番目($1 \leqq i \leqq n$)のカードに書かれた数を$a_i$とする.

(1)$n=5$のとき,$a_1<a_2<a_3$かつ$a_3>a_4>a_5$を満たすカードの並べ方の総数を求めよ.
(2)$n \geqq 3$とする.次の条件$(ⅰ)$,$(ⅱ)$を満たすカードの並べ方の総数を$n$の式で表せ.ただし,$(ⅱ)$では,$k=2$のとき$a_1<a_2<\cdots<a_k$は$a_1<a_2$を表し,$k=n-1$のとき$a_k>a_{k+1}>\cdots>a_n$は$a_{n-1}>a_n$を表す.

(i) $1<k<n$
(ii) $a_1<a_2<\cdots<a_k$かつ$a_k>a_{k+1}>\cdots>a_n$

(3)$n \geqq 4$とする.次の条件$(ⅰ)$,$(ⅱ)$,$(ⅲ)$を満たすカードの並べ方の総数を$n$の式で表せ.ただし,$(ⅲ)$のそれぞれの不等式は$(2)$と同様に,$p=2$のとき$a_1>a_2$を表し,$q=p+1$のとき$a_p<a_{p+1}$を表し,$q=n-1$のとき$a_{n-1}>a_n$を表す.

(i) $1<p<q<n$
(ii) $a_1=n$かつ$a_p=1$
(iii) $a_1>a_2>\cdots>a_p$かつ$a_p<a_{p+1}<\cdots<a_q$かつ$a_q>a_{q+1}>\cdots>a_n$
福井大学 国立 福井大学 2014年 第5問
$\mathrm{O}$を原点とする座標平面上に点$\mathrm{A}(2,\ 0)$と放物線$\displaystyle C:y=\frac{1}{2}x^2-3x+6$があり,$C$上の点で$x$座標が$t$と$2t$であるものをそれぞれ$\mathrm{P}$,$\mathrm{Q}$とおく.このとき,以下の問いに答えよ.ただし$t>0$とする.

(1)$3$点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$が一直線上にあるときの$t$の値を$t_0$とおく.$t_0$の値を求めよ.
(2)$t=t_0$のとき,$\triangle \mathrm{OAQ}$の周および内部と,不等式$\displaystyle y \geqq \frac{1}{2}x^2-3x+6$の表す領域との共通部分の面積を求めよ.
(3)$0<t<t_0$を満たす$t$に対して,$\triangle \mathrm{APQ}$の面積を$S(t)$とおくとき,$S(t)$の最大値とそのときの$t$の値を求めよ.
スポンサーリンク

「不等式」とは・・・

 まだこのタグの説明は執筆されていません。