タグ「不等式」の検索結果

21ページ目:全633問中201問~210問を表示)
信州大学 国立 信州大学 2014年 第5問
すべての実数$x,\ y$に対して不等式
\[ \frac{1}{1+x^2+(y-x)^2} \leqq \frac{a}{1+x^2+y^2} \]
が成り立つとき,$a$の値の範囲を求めよ.
信州大学 国立 信州大学 2014年 第1問
次の問いに答えよ.

(1)$0<\theta<\pi$のとき,不等式$\cos 3\theta+4 \cos^2 \theta<0$を満たす$\theta$の値の範囲を求めよ.
(2)三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$の中点を$\mathrm{E}$とする.$2$直線$\mathrm{BE}$と$\mathrm{CD}$の交点を$\mathrm{P}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{2+4+6+\cdots +2n}$の和を求めよ.

{\bf 補足説明}
設問中の式の意味は
\[ \sum_{n=1}^\infty \frac{1}{2+4+6+\cdots +2n}=\frac{1}{2}+\frac{1}{2+4}+\frac{1}{2+4+6}+\frac{1}{2+4+6+8}+\cdots \]
である.
岩手大学 国立 岩手大学 2014年 第1問
次の問いに答えよ.

(1)次の不等式を解け.ただし,$a$は定数で,$a>0$,$a \neq 1$を満たすものとする.
\[ a^{2x}-a^x-6<0 \]
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=5$,$\angle \mathrm{A}={60}^\circ$とする.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{P}$とするとき,$\mathrm{BP}$の長さを求めよ.
(3)赤玉$4$個と白玉$5$個が入った袋がある.無作為に玉を$2$個同時に取り出したとき,赤玉の出る個数の期待値を求めよ.
岩手大学 国立 岩手大学 2014年 第1問
次の問いに答えよ.

(1)次の不等式を解け.ただし,$a$は定数で,$a>0$,$a \neq 1$を満たすものとする.
\[ a^{2x}-a^x-6<0 \]
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=5$,$\angle \mathrm{A}={60}^\circ$とする.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{P}$とするとき,$\mathrm{BP}$の長さを求めよ.
(3)赤玉$4$個と白玉$5$個が入った袋がある.無作為に玉を$2$個同時に取り出したとき,赤玉の出る個数の期待値を求めよ.
帯広畜産大学 国立 帯広畜産大学 2014年 第2問
関数$f(x)$を$\displaystyle f(x)=-7+k \int_0^6 |x-u| \, du$と定義する.ただし,$k$は定数,$f(3)=-5$である.次の各問に答えなさい.

(1)$k$の値を求めなさい.
(2)$y=f(x)$のグラフの概形を図示しなさい.
(3)実数$s,\ t$が条件$0 \leqq s \leqq 20$,$0 \leqq t \leqq 20$を満たしながら動くとき,$xy$座標平面上の点
\[ \mathrm{P} \left( \frac{1}{2}s+\frac{1}{10}t,\ -\frac{1}{4}s-\frac{1}{5}t \right) \]
が動く領域$D$を求めなさい.
(4)不等式$y \geqq f(x)$の表す領域を$E$とするとき,領域$E$と領域$D$の共通部分の面積を求めなさい.
東京医科歯科大学 国立 東京医科歯科大学 2014年 第3問
$a$を正の実数,$k$を自然数とし,$x>0$で定義される関数
\[ f(x)=\int_a^{ax} \frac{k+\sqrt[k]{u}}{ku} \, du \]
を考える.このとき以下の各問いに答えよ.

(1)$f(x)$の増減および凹凸を調べ,$y=f(x)$のグラフの概形をかけ.
(2)$y=f(x)$の$x=1$における接線の方程式を求めよ.
(3)$S$を正の実数とするとき,$f(p)=S$を満たす実数$p$がただ$1$つ存在することを示せ.
(4)$\displaystyle b=\frac{k}{k+\sqrt[k]{a}}$とおくとき,$(2)$の$S,\ p$について,次の不等式が成立することを示せ.
\[ 1+bS<p<e^{bS} \]
琉球大学 国立 琉球大学 2014年 第2問
$a,\ b$を実数とし,放物線$y=x(x-a)$を$C$とする.次の問いに答えよ.

(1)$C$上の点$(t,\ t(t-a))$における$C$の接線の方程式を求めよ.
(2)点$(b,\ 0)$から$C$に,相異なる$2$本の接線が引けるとする.このとき$a,\ b$がみたす不等式を求め,その不等式が表す領域を,$ab$平面に図示せよ.
(3)$C$と$x$軸が囲む部分の面積を$S(a)$とする.関数$y=S(a) (-2 \leqq a \leqq 2)$のグラフをかけ.
宮崎大学 国立 宮崎大学 2014年 第5問
不等式
\[ \log_x y<2+3 \log_y x \]
の表す領域を座標平面上に図示せよ.
琉球大学 国立 琉球大学 2014年 第3問
整数$m,\ n$は$m \geqq 1$,$n \geqq 2$をみたすとする.次の問いに答えよ.

(1)$x>0$のとき,$y=\log x$の第$1$次導関数$y^\prime$と第$2$次導関数$y^{\prime\prime}$を求めよ.
(2)座標平面上の$3$点$\mathrm{A}(m,\ \log m)$,$\mathrm{B}(m+1,\ \log m)$,$\mathrm{C}(m+1,\ \log (m+1))$を頂点とする三角形の面積を$S_m$とする.$S_m$を$m$を用いて表せ.
(3)$\displaystyle f(m)=\log m+S_m-\int_m^{m+1} \log x \, dx$とおく.$f(m)<0$が成り立つことを,$y=\log x$のグラフを用いて説明せよ.
(4)$f(1)+f(2)+\cdots +f(n-1)<0$であることを用いて,不等式
\[ \log 1+\log 2+\cdots +\log (n-1)<n \log n-n+1-\frac{1}{2} \log n \]
を証明せよ.
(5)不等式$\displaystyle n!<e \sqrt{n} \left( \frac{n}{e} \right)^n$を証明せよ.ただし,$e$は自然対数の底である.
琉球大学 国立 琉球大学 2014年 第4問
$1$個のさいころを繰り返し投げて景品を当てるゲームを行う.景品は$\mathrm{A}$と$\mathrm{B}$の$2$種類あり,次の規則にしたがって景品をもらえるとする.
\begin{itemize}
出た目の数が$6$のときは,景品$\mathrm{A}$をもらえる.
出た目の数が$4,\ 5$のときは,景品$\mathrm{B}$をもらえる.
出た目の数が$1,\ 2,\ 3$のときは,景品はもらえない.
景品$\mathrm{A}$と景品$\mathrm{B}$の$2$種類とももらうことができたらゲームは終了する.
\end{itemize}
ちょうど$n$回さいころを投げ終わったところでゲームが終了する確率を$p_n$とする.次の問いに答えよ.

(1)$p_2$の値を求めよ.
(2)$n$を$2$以上の整数とする.$p_n$を$n$を用いて表せ.
(3)$n$を$2$以上の整数とする.不等式
\[ p_{n+1}-p_n<\frac{2}{3}(p_n-p_{n-1}) \]
を示せ.ただし,$p_1=0$とする.
スポンサーリンク

「不等式」とは・・・

 まだこのタグの説明は執筆されていません。