タグ「不等式」の検索結果

17ページ目:全633問中161問~170問を表示)
津田塾大学 私立 津田塾大学 2015年 第1問
次の問いに答えよ.

(1)不等式$(|x-1|-1)(y-1)>0$の表す領域を図示せよ.
(2)平面上の直線$\displaystyle y=\frac{1}{2}x+1$に関して点$(2,\ 7)$と対称な点の座標を求めよ.
(3)$3$辺の長さが$x,\ 1-2x,\ 2-2x$である直方体がある.このような直方体のなかで体積が最大となるものの体積を求めよ.
津田塾大学 私立 津田塾大学 2015年 第1問
次の問いに答えよ.

(1)$n$を自然数とするとき,不等式$3^n>n^2$を示せ.
(2)正四面体$\mathrm{OABC}$において$\mathrm{OA}$の中点を$\mathrm{M}$,$\mathrm{BC}$の中点を$\mathrm{N}$とする.

(i) $\overrightarrow{\mathrm{MN}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(ii) 直線$\mathrm{MN}$と直線$\mathrm{BC}$は直交することを示せ.
東京電機大学 私立 東京電機大学 2015年 第4問
次の各問に答えよ.

(1)方程式$11+\log_2 x=\log_2 (33x+1)$を解け.
(2)$0 \leqq x \leqq 2\pi$のとき,不等式$\cos 2x+3 \sin x-2 \geqq 0$を解け.
(3)$3$次式$f(x)$は$x^3$の係数が$1$であり,しかも$f(1)=f(2)=f(6)=12$をみたしている.方程式$f(x)=0$を解け.
(4)曲線$C:y=x(x-1)(x+a)$上の点$(1,\ 0)$における接線が$C$自身と$x=3$において共有点をもつ.このとき,定数$a$の値を求めよ.
(5)曲線$C:y=|x^2-4|$と直線$\ell:y=2x+4$で囲まれた$2$つの図形の面積の和を求めよ.
神奈川大学 私立 神奈川大学 2015年 第1問
次の空欄$(\mathrm{a})$~$(\mathrm{g})$を適当に補え.

(1)不等式$|3x-5|<2x+1$を満たす$x$の値の範囲は$[$(\mathrm{a])$}$である.
(2)$t>0$とする.$2$つのベクトル$\overrightarrow{a}=(t+3,\ t-1)$と$\overrightarrow{b}=(-1,\ t)$が垂直であるとき,$t=[$(\mathrm{b])$}$である.
(3)白い玉が$3$個,赤い玉が$2$個入っている袋がある.袋から玉を$1$つ取り出し色を確かめ袋に戻す操作を$3$回行う.このとき,$2$回以上白い玉が出る確率は$[$(\mathrm{c])$}$である.

(4)$\displaystyle \lim_{h \to 0} \frac{e^{2h+2}-e^2}{h}=[$(\mathrm{d])$}$である.

(5)$8$つの数の集まり$\{-2,\ -1,\ 0,\ 1,\ 2,\ 3,\ 4,\ 5\}$を$2$組に分け,それぞれの組に属する数の和を考える.たとえば,
$\{-1,\ 0,\ 2,\ 4,\ 5\} \text{と} \{-2,\ 1,\ 3\}$
という組み分けについては,$10$と$2$である.このとき,
「どんな組み分けについても,少なくとも一方の和は$a$以上である」
という主張が成立するような数$a$のうち最大のものは$[$(\mathrm{e])$}$である.

(6)$\displaystyle \int_1^x \log t \, dt=[$(\mathrm{f])$}$であるので,$\displaystyle f(x)=\int_1^x (x-1) \log t \, dt$のとき,$f^\prime(x)=[$(\mathrm{g])$}$である.
岡山理科大学 私立 岡山理科大学 2015年 第1問
次の問いに答えよ.

(1)不等式$|3-2x|<1$を解け.
(2)次の等式が$x$についての恒等式となるように,定数$a,\ b$の値を定めよ.
\[ \frac{2x-18}{(x+3)(x-5)}=\frac{a}{x+3}+\frac{b}{x-5} \]
(3)和$\displaystyle \sum_{k=1}^n 2k(3k-1)$を求めよ.
東京都市大学 私立 東京都市大学 2015年 第1問
次の問に答えよ.

(1)関数$\displaystyle y=\frac{\sin x}{x}$のグラフの$x=\pi$における接線の方程式を求めよ.
(2)$xy$平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ b)$,$\mathrm{B}(2 \cos {30}^\circ,\ 2 \sin {30}^\circ)$を頂点とする$\triangle \mathrm{OAB}$は$\angle \mathrm{OBA}={90}^\circ$,$\angle \mathrm{AOB}={15}^\circ$を満たす.このとき$a$の値を求めよ.ただし,$a<\sqrt{3}$とする.
(3)不等式$|x+1|-3 |x-1| \geqq 0$を満たす実数$x$の範囲を求めよ.
京都女子大学 私立 京都女子大学 2015年 第1問
次の各問に答えよ.

(1)$2$つの直線$y=-x+2$と$y=\sqrt{3}x$のなす鋭角$\theta$を求めよ.
(2)$1$個のさいころを$5$回投げるとき,$1$の目が$2$回以上出る確率を求めよ.
(3)不等式$x^2-a^2x<(2a+3)x-2a^3-3a^2$($a$は定数)を$x$について解け.
西南学院大学 私立 西南学院大学 2015年 第1問
以下の問に答えよ.

(1)$2$次不等式$ax^2+8x+b>0$の解が$-1<x<5$であるとき,$a=[アイ]$,$b=[ウエ]$である.
(2)$y=|x^2+x-2|+x+1$の$-3 \leqq x \leqq 1$における最大値は$[オ]$,最小値は$[カキ]$である.
九州産業大学 私立 九州産業大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1+\sqrt{13}}{2}$とするとき,$x^2-x=[ア]$,$x^3-4x+10=[イウ]$である.
(2)不等式$x^2+2x \leqq -x \leqq -x^2-2x+2$の解は$[エオ] \leqq x \leqq [カ]$である.
(3)$m$を定数とする.放物線$C:y=x^2-2mx+9$について,

(i) 放物線$C$が$x$軸に接するとき,$m=\pm [キ]$である.
(ii) 放物線$C$が$x$軸と異なる$2$点で交わり,$x$軸から切り取る線分の長さが$8$であるとき,$m=\pm [ク]$である.
(iii) 放物線$C$が$x$軸の負の部分と異なる$2$点で交わるような定数$m$の値の範囲は$m<[ケコ]$である.

(4)$5$人が$1$回じゃんけんを行うとき,

(i) $1$人が勝ち,$4$人が負ける確率は$\displaystyle \frac{[サ]}{[シス]}$である.

(ii) $2$人が勝ち,$3$人が負ける確率は$\displaystyle \frac{[セソ]}{[タチ]}$である.

(iii) 誰も勝たない,すなわち,あいこになる確率は$\displaystyle \frac{[ツテ]}{[トナ]}$である.
昭和大学 私立 昭和大学 2015年 第1問
次の各問に答えよ.

(1)$x$の関数$f(x),\ g(x)$をそれぞれ$f(x)=-x^2+2x+2$,$g(x)=x^2+2x+a$とする.ただし,$a$は定数とする.
$(1$-$1)$ $g(x)<f(x)$を満たす実数$x$が区間$-2 \leqq x \leqq 2$に存在するような,定数$a$の値の範囲を求めよ.
$(1$-$2)$ $g(x_1)<f(x_2)$を満たす実数$x_1$および$x_2$が区間$-2 \leqq x \leqq 2$に存在するような,定数$a$の値の範囲を求めよ.
(2)白球$4$個と黒球$n$個が入った袋から同時に$2$個の球を取り出すとき,$2$個の球が同色である確率を$p_n$とする.ただし,球はすべて同じ確率で取り出されるものとする.
$(2$-$1)$ $n=3$のとき,$p_n$の値を求めよ.
$(2$-$2)$ $n \geqq 2$とする.このとき,$\displaystyle p_n \geqq \frac{1}{2}$となる整数$n$の最小値を求めよ.
(3)$0 \leqq x<2\pi$のとき,不等式$\sin x+\sqrt{3} \cos x \geqq \sqrt{2}$を解け.
(4)$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.$6^{100}$の桁数を求めよ.
スポンサーリンク

「不等式」とは・・・

 まだこのタグの説明は執筆されていません。