タグ「不等号」の検索結果

99ページ目:全4604問中981問~990問を表示)
宇都宮大学 国立 宇都宮大学 2015年 第1問
袋の中に$5$個の玉が入っている.それらは,$0$と書かれた玉が$2$個,$1$と書かれた玉,$-1$と書かれた玉,$2$と書かれた玉がそれぞれ$1$個ずつである.この袋の中から$3$個の玉を取り出す.取り出した$3$個の玉に書かれた数字の和を$m$とする.次に,袋の中に残った$2$個の玉に書かれた数字の積を$n$とする.このように定義された$m$と$n$のもとで,$2$次関数
\[ f(x)=x^2-mx+n \]
を考える.このとき,次の問いに答えよ.

(1)$m$のとり得る値をすべて求めよ.
(2)$m$と$n$のとり得る組合せ$(m,\ n)$をすべて求めよ.
(3)$m$と$n$のとり得る組合せ$(m,\ n)$のすべてについて,それぞれが起こる確率を求めよ.
(4)不等式$f(x)>0$がすべての実数$x$について成り立つ確率を求めよ.
(5)方程式$f(x)=0$が異なる実数解$\alpha,\ \beta$をもち,同時に$\alpha<2$かつ$\beta<2$となる確率を求めよ.
信州大学 国立 信州大学 2015年 第1問
次の問いに答えよ.

(1)座標空間において,$3$点$\mathrm{A}(2,\ -1,\ 3)$,$\mathrm{B}(1,\ 1,\ 2)$,$\mathrm{C}(4,\ 1,\ -1)$を通る平面が$x$軸と交わる点の座標を求めよ.
(2)$0 \leqq x<2\pi$のとき,方程式$\displaystyle 1-\cos^2 x=\frac{\sqrt{3}}{2} \sin 2x$を解け.
(3)方程式$3(4^x+4^{-x})-13(2^x+2^{-x})+16=0$を解け.
立教大学 私立 立教大学 2015年 第2問
$a$は$0$でない実数,$r$は$0<r<1$を満たす実数とする.初項$a$,公比$r$の等比数列$a_1,\ a_2,\ a_3,\ \cdots$に対し,
\[ S=\sum_{n=1}^\infty a_n,\quad T=\sum_{n=1}^\infty a_na_{n+1} \]
とおく.このとき,次の問いに答えよ.

(1)$S$と$T$をそれぞれ$a$と$r$を用いて表せ.
(2)$S=T$のとき,$a$を$r$を用いて表せ.
(3)$S=T$のとき,$S$を$r$を用いて表せ.
(4)$S=T$のとき,$S$の最小値と,最小値を与える$r$の値をそれぞれ求めよ.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$にあてはまる数または式を記入せよ.

(1)空間内の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 0,\ 1)$,$\mathrm{C}(2,\ 2,\ 0)$とする.実数$p,\ q$を用いて点$\mathrm{H}$を$\overrightarrow{\mathrm{AH}}=p \overrightarrow{\mathrm{AB}}+q \overrightarrow{\mathrm{AC}}$で定める.原点を$\mathrm{O}(0,\ 0,\ 0)$として,$\overrightarrow{\mathrm{OH}}$が$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の両方に垂直であるとき,$p=[ア]$,$q=[イ]$である.
(2)不等式$x+3<5 |x-1|$を満たす実数$x$の範囲は,$x<[ウ]$または$x>[エ]$である.
(3)多項式$(x^5+1)^2$を$x^2+x+1$で割った余りを$Ax+B$とすると,定数$A$と$B$は$A=[オ]$,$B=[カ]$である.
(4)$0<a<1$のとき$\displaystyle \lim_{n \to \infty} \frac{1}{n} \log (a^{2n}+a^{3n})=[キ]$である.
(5)大中小の$3$つのサイコロをふって,出た目の和が$9$になる確率は$[ク]$である.
(6)$0 \leqq \theta \leqq \pi$のとき,$\displaystyle \int_0^{\frac{\pi}{2}} \cos (x-\theta) \, dx$の最大値は$[ケ]$であり,最小値は$[コ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$a>0$とし,関数$f(x)$を
\[ f(x)=-a \cos x+\frac{1}{2}a^2 \cos 2x \qquad (-\pi<x<\pi) \]
と定める.

(1)$f(x)$の最小値は,$a \leqq [ア]$のとき$[イ]$であり,$a \geqq [ア]$のとき$[ウ]$である.ただし,$[ア]$には数,$[イ]$と$[ウ]$には$a$の多項式を記入すること.
(2)曲線$y=f(x)$が$x$軸と接するのは$a=[エ]$のときである.
(3)$a=[エ]$とする.曲線$y=f(x)$と$x$軸で囲まれた部分の面積は$[オ]$であり,その部分を$x$軸の周りに$1$回転させてできる立体の体積は$[カ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
関数$y=\sin \theta \cos \theta-\sin \theta+\cos \theta$について考える.以下に答えなさい.

(1)$t=\cos \theta-\sin \theta$とおくとき,$y$を$t$の式で表しなさい.
(2)$\theta$が$0 \leqq \theta \leqq \pi$の範囲を動くとき,$t$の動く範囲を求めなさい.
(3)$\theta$が$0 \leqq \theta \leqq \pi$の範囲を動くとき,$y$の最大値,最小値と,それらを与える$\theta$の値をそれぞれ求めなさい.
早稲田大学 私立 早稲田大学 2015年 第4問
$n$は任意の自然数,また,$k=1,\ 2,\ \cdots,\ n$について$a_k$は$0 \leqq a_k \leqq k$を満たす整数である.このとき,以下の問に答えよ.

(1)数学的帰納法により,次の等式を示せ.
\[ 1 \cdot 1!+2 \cdot 2!+\cdots +n \cdot n!=(n+1)!-1 \]
(2)$2015=a_1 \cdot 1!+a_2 \cdot 2!+\cdots +a_n \cdot n!$が成り立っているとき,$n$を求めよ.ただし,$a_n \neq 0$とする.
(3)$(2)$の等式を成立させる$a_1,\ a_2,\ \cdots, a_n$を求め,答のみ記入せよ.
早稲田大学 私立 早稲田大学 2015年 第3問
不等式$\log_{x^2+x+1}(2-x)<0$を満たす$x$の範囲は,
\[ [キ]<x<[ク],\quad [ケ]<x<[コ] \]
である.ただし,$[ク] \leqq [ケ]$とする.
早稲田大学 私立 早稲田大学 2015年 第1問
関数$\displaystyle f(x)=\frac{x}{\sqrt{1+x^2}}$について,次の問に答えよ.

(1)$y=f(x)$のグラフの概形を描け.
(2)$t>0$を媒介変数として,$x=f^\prime(t)$,$y=f(t)-tf^\prime(t)$で表される曲線の概形を描け.
(3)$(2)$の曲線の接線が$x$軸と$y$軸によって切り取られてできる線分の長さは一定であることを示せ.
早稲田大学 私立 早稲田大学 2015年 第2問
整数$x,\ y$が$x^2-2y^2=1$をみたすとき,次の問に答えよ.

(1)整数$a,\ b,\ u,\ v$が$(a+b \sqrt{2})(x+y \sqrt{2})=u+v \sqrt{2}$をみたすとき,$u,\ v$を$a,\ b,\ x,\ y$で表せ.さらに$a^2-2b^2=1$のときの$u^2-2v^2$の値を求めよ.ともに答のみでよい.
(2)$1<x+y \sqrt{2} \leqq 3+2 \sqrt{2}$のとき,$x=3$,$y=2$となることを示せ.
(3)自然数$n$に対して,$(3+2 \sqrt{2})^{n-1}<x+y \sqrt{2} \leqq (3+2 \sqrt{2})^n$のとき,$x+y \sqrt{2}=(3+2 \sqrt{2})^n$を示せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。