タグ「不等号」の検索結果

95ページ目:全4604問中941問~950問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
$0<a<b$を満たす実数$a,\ b$に対し,曲線$\displaystyle y=\frac{1}{x}$,$x$軸及び$2$直線$x=a$,$x=b$で囲まれた図形の面積を$S(a,\ b)$で表す.以下の問いに答えよ.

(1)$n$を自然数とする.$S(n,\ 3n)$を求め,この値は$n$によらないことを示せ.
(2)$\displaystyle \lim_{n \to \infty} S(n,\ n+\sqrt{n})=0$が成り立つことを示せ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} S(n,\ n+k) \]
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
座標平面上に関数$f(x)=x^2-2x+2-|2x-2|$を用いて表される曲線$C:y=f(x)$がある.

(1)$y=f(x)$のグラフの概形を描け.
(2)$m$を定数とする.点$(0,\ 1)$を通る傾き$m$の直線と曲線$C$の交点の数を求めよ.
(3)直線$y=a^2$と曲線$C$によって囲まれる領域のうち,$a^2 \leqq y \leqq f(x)$かつ$0 \leqq x \leqq 2$を満たす部分の面積を求めよ.ただし,$0<a<1$とする.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
$x>0$で定義された曲線$y=\log x$を$C$とする.以下の問いに答えよ.

ただし,$\displaystyle \lim_{x \to 0}x \log x=0$を用いてよい.$a$を定数とする.

(1)点$(a,\ 0)$から$C$に何本の接線が引けるか調べよ.
(2)$C$の法線で点$(a,\ 0)$を通るものがちょうど$1$本あることを示せ.
(3)原点$(0,\ 0)$を通る$C$の接線,$x$軸,曲線$C$で囲まれた図形の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上で原点$\mathrm{O}$を中心,半径$1$の円を$S$とする.点$\mathrm{P}$が円$S$上を動くとき,$\mathrm{P}$における$S$の接線に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$から下ろした垂線の交点$\mathrm{Q}$のなす軌跡を$C$とする.$x$軸の正の方向に対して$\mathrm{OP}$のなす角を$t$として,$\mathrm{P}$の座標を$(\cos t,\ \sin t)$で表す.このときの$\mathrm{Q}$の座標を$(f(t),\ g(t))$とする.

(1)$f(t),\ g(t)$を求めよ.
(2)$g(t)$の最大値を求めよ.
(3)$C$で囲まれた図形の$y \geqq 0$の部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
$0<a<b$を満たす実数$a,\ b$に対し,曲線$\displaystyle y=\frac{1}{x}$,$x$軸及び$2$直線$x=a$,$x=b$で囲まれた図形の面積を$S(a,\ b)$で表す.以下の問いに答えよ.

(1)$n$を自然数とする.$S(n,\ 3n)$を求め,この値は$n$によらないことを示せ.
(2)$\displaystyle \lim_{n \to \infty} S(n,\ n+\sqrt{n})=0$が成り立つことを示せ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} S(n,\ n+k) \]
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
次の問いに答えよ.

(1)不等式
\[ \sqrt{n} \sqrt{a^2+b^2} \leqq a+b \leqq \sqrt{m} \sqrt{a^2+b^2} \]
がすべての負でない実数$a \geqq 0$,$b \geqq 0$に対して成り立つような自然数$m$と$n$の範囲を求めよ.
(2)$m$を$2$以上の自然数,$n$を自然数とする.不等式
\[ \frac{m^{n+1}-1}{n+1}>\frac{m^n-1}{n} \]
が成り立つことを示せ.
(3)$m$を$2$以上の自然数,$n$を自然数とするとき,次の不等式
\[ \comb{mn}{n} \geqq m^n>\sum_{i=0}^{n-1}m^i \]
が成り立つことを示せ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第4問
$1$から$9$までの自然数のそれぞれに赤か青の色を付ける操作を考える.

(1)$X$をこれら$1$から$9$までの自然数のうちの相異なる$3$つの数からなる集合とする.$1$から$9$のそれぞれに確率$\displaystyle \frac{1}{2}$で赤か青の色を付けるとき,$X$に属するすべての数がすべて同じ色である確率を求めよ.
(2)一般に,ある試行における$3$つの事象$A,\ B,\ C$について,
\[ P(A \cup B \cup C) \leqq P(A)+P(B)+P(C) \]
が成り立つことを示せ.ここで$P(A)$は事象$A$が起こる確率である.
(3)$1$から$9$までの自然数のうちの相異なる$3$つの数からなる集合が$3$つある.それを$X,\ Y,\ Z$とする.$1$から$9$のそれぞれに確率$\displaystyle \frac{1}{2}$で赤か青の色を付ける操作をしたとき,$X,\ Y,\ Z$のどれにも両方の色の数が含まれる確率が$0$ではないことを示せ.ただし,$X \cap Y$,$Y \cap Z$,$Z \cap X$は空集合とは限らない.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
座標平面上に関数$f(x)=x^2-2x+2-|2x-2|$を用いて表される曲線$C:y=f(x)$がある.

(1)$y=f(x)$のグラフの概形を描け.
(2)$m$を定数とする.点$(0,\ 1)$を通る傾き$m$の直線と曲線$C$の交点の数を求めよ.
(3)直線$y=a^2$と曲線$C$によって囲まれる領域のうち,$a^2 \leqq y \leqq f(x)$かつ$0 \leqq x \leqq 2$を満たす部分の面積を求めよ.ただし,$0<a<1$とする.
浜松医科大学 国立 浜松医科大学 2015年 第1問
数列$\{a_n\}$は初項$\displaystyle a_1=\frac{1}{3}$および漸化式
\[ (n+2)a_n-2(n+1)a_{n+1}+(n+1)a_na_{n+1}=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.以下の問いに答えよ.

(1)$a_2$を求めよ.
(2)すべての自然数$n$について$a_n \neq 0$が成り立つことを証明せよ.
(3)数列$\{a_n\}$の一般項を求めよ.
(4)$\displaystyle S_n=\sum_{k=1}^n a_k$とする.このとき,すべての自然数$n$について$S_n<2$が成り立つことを証明せよ.
浜松医科大学 国立 浜松医科大学 2015年 第2問
整数ではない実数$x$に対して$\displaystyle f(x)=\frac{1}{x-[x]}$と定める.ただし,$[x]$は$l<x<l+1$を満たす整数$l$を表す.以下の問いに答えよ.

(1)$f(\sqrt{2}),\ f(f(\sqrt{2}))$を計算し,簡潔な形で答えよ.
(2)$f(\sqrt{3}),\ f(f(\sqrt{3})),\ f(f(f(\sqrt{3})))$を計算し,簡潔な形で答えよ.
(3)自然数$n$に対して,$n<x<n+1$かつ$f(x)=x$を満たす$x$を求めよ.
(4)自然数$n$を$1$つ固定する.$n<x<n+1$の範囲の$x$で,$f(x)$が整数ではなく,さらに$f(f(x))=x$を満たす$x$を大きい順に並べる.その中の$x$で$f(x)=x$を満たすものは何番目に現れるかを答えよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。