タグ「不等号」の検索結果

75ページ目:全4604問中741問~750問を表示)
徳島大学 国立 徳島大学 2015年 第3問
$c$を実数とする.数列$\{a_n\}$は次を満たす.
\[ a_1=1,\quad a_{n+1}=\frac{{a_n}^2+cn-4}{3n} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$a_2,\ a_3$を$c$を用いて表せ.
(2)$a_1+a_3 \leqq 2a_2$のとき,不等式$a_n \geqq 3 (n=3,\ 4,\ 5,\ \cdots)$を示せ.
(3)$a_1+a_3=2a_2$のとき,極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
千葉大学 国立 千葉大学 2015年 第3問
コインを$n$回続けて投げ,$1$回投げるごとに次の規則に従って得点を得るゲームをする.
\begin{itemize}
コイン投げの第$1$回目には,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と異なる面が出たら,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と同じ面が出たら,$2$点を得点とする.
\end{itemize}
例えばコインを$3$回投げて(裏,表,裏)の順に出たときの得点は,$1+1+1=3$より$3$点となる.また(裏,裏,表)のときの得点は,$1+2+1=4$より$4$点となる.

コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とし,このゲームで得られる得点が$m$となる確率を$P_{n,m}$とおく.このとき,以下の問いに答えよ.

(1)$n \geqq 2$が与えられたとき,$P_{n,2n-1}$と$P_{n,2n-2}$を求めよ.
(2)$n \leqq m \leqq 2n-1$について,$P_{n,m}$を$n$と$m$の式で表せ.
千葉大学 国立 千葉大学 2015年 第3問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第2問
スイッチを押すと,$0$から$n$までの整数が$1$つ表示される機械がある.表示される数字を$X$とすると,$X=k$となる確率$P(X=k)=C \alpha^k (k=0,\ 1,\ 2,\ \cdots,\ n)$である.ただし,$C$は定数,$0<\alpha<1$である.

(1)$P(X=k)$を$\alpha$と$k$で表せ($k=0,\ 1,\ 2,\ \cdots,\ n$).
(2)$P(X<k)>1-\alpha^k$であることを示せ($k=1,\ 2,\ 3,\ \cdots,\ n+1$).
(3)確率$p$で$1$点もらえ,確率$1-p$で得点がもらえない試行を考える($0<p<1$).この試行を独立に$m$回行ったとき,$l$点($0 \leqq l \leqq m$)もらえる確率を$Q_{m,l}(p)$と表す.このとき,$m,\ l$を一定とし,$p$を変数とみなして以下の問に答えよ.

(i) $y=\log Q_{m,l}(p)$はどのような変化をするか.$p$を横軸,$y$を縦軸とする$y$のグラフの概形を描け.ただし,$\log$は自然対数である.
(ii) $Q_{m,l}(p)$を最大にする$p$を求めよ.

(4)$\displaystyle \alpha=\frac{1}{2}$とする.このとき,$Q_{2m,m}(P(X<k))$を最大にする$k (k=1,\ 2,\ 3,\ \cdots,\ n)$を求めよ.
小樽商科大学 国立 小樽商科大学 2015年 第1問
次の$[ ]$の中を適当に補え.

(1)$n^2-92n+2015 \leqq 0$を満たす整数$n$は全部で$[$(\mathrm{a])$}$個である.
(2)方程式$\log_x (x^3+2)=\log_x x(2x+1)$を解くと$x=[$(\mathrm{b])$}$である.
(3)下図の直角三角形$\mathrm{ACD}$において,$\angle \mathrm{BCD}={90}^\circ$,$\angle \mathrm{DAC}=\alpha$,$\angle \mathrm{DBC}=\beta$,$\mathrm{AB}=x$,$\mathrm{CD}=h$とするとき,$h$を$x,\ \alpha,\ \beta$で表すと$h=[$(\mathrm{c])$}$である.
(図は省略)
小樽商科大学 国立 小樽商科大学 2015年 第2問
曲線$T:y=x^3+6x^2$について,次の問いに答えよ.

(1)点$(2,\ a)$を通る曲線$T$への接線の本数$L$を求めよ.ただし$a>0$とする.
(2)この$L$が$2$本のとき,接点の$x$座標が小さい方の接線と,曲線$T$で囲まれる部分の面積を求めよ.
小樽商科大学 国立 小樽商科大学 2015年 第3問
次の$[ ]$の中を適当に補え.

(1)整数$m \geqq 2015$に対し,
\[ \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+\cdots +\frac{1}{{(2m)}^2-1}=[ア] \]
(2)下図のような道に沿って$\mathrm{A}$地点から$\mathrm{B}$地点まで進むとき,最短経路は何通りあるかを求めると$[イ]$通り.
(図は省略)
(3)中心が$\mathrm{A}(1,\ 0)$にある半径$r (0<r<1)$の円に原点$\mathrm{O}$から$2$本の接線を引く.それぞれの接点と中心$\mathrm{A}$と原点$\mathrm{O}$を頂点とする四角形の面積の最大値$M$とそのときの$r$の値を求めると$(M,\ r)=[ウ]$.
弘前大学 国立 弘前大学 2015年 第2問
次の問いに答えよ.

(1)$r>0$を定数とする.点$(x,\ y)$が楕円$4x^2+y^2=r^2$上を動くとき,$6x+4y$のとり得る値の範囲を求めよ.
(2)$x,\ y$がすべての実数値をとるとき,$\displaystyle \frac{6x+4y+5}{4x^2+y^2+15}$の最大値と最小値を求めよ.
弘前大学 国立 弘前大学 2015年 第3問
次の問いに答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{1}{2}$のとき,次の不等式が成り立つことを示せ.
\[ -x^2-x \leqq \log (1-x) \leqq -x \]
(2)数列$\{a_n\}$を次によって定める.
\[ \begin{array}{rcl}
a_1 &=& \displaystyle \left( 1-\frac{1}{2 \cdot 1^2} \right) \\
a_2 &=& \displaystyle \left( 1-\frac{1}{2 \cdot 2^2} \right) \left( 1-\frac{2}{2 \cdot 2^2} \right) \phantom{\displaystyle\frac{[ ]}{2}} \\
& \vdots & \\
a_n &=& \displaystyle \left( 1-\frac{1}{2n^2} \right) \left( 1-\frac{2}{2n^2} \right) \cdots \left( 1-\frac{n}{2n^2} \right)
\end{array} \]
このとき,極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
弘前大学 国立 弘前大学 2015年 第4問
$xy$平面において,曲線$C:x^2+y^2=1 (x \geqq 0,\ y \geqq 0)$,および直線$\ell:y=(\tan \theta)x$を考える.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{2}$をみたす定数とする.$S_1,\ S_2,\ S_3$を次によって定める.

$S_1:$ $y$軸,曲線$C$,直線$\ell$で囲まれた部分の面積
$S_2:$ $x$軸,曲線$C$,直線$x=\cos \theta$で囲まれた部分の面積
$S_3:$ $x$軸,直線$\ell$,直線$x=\cos \theta$で囲まれた部分の面積

次の問いに答えよ.

(1)$S_1$および$S_2$を$\theta$を用いて表せ.
(2)$S_1=S_2$となる$\theta$が存在することを示せ.
(3)$S_1=S_2=S_3$となる$\theta$は存在しないことを示せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。