タグ「不等号」の検索結果

67ページ目:全4604問中661問~670問を表示)
金沢大学 国立 金沢大学 2015年 第3問
座標平面上で,$x$座標と$y$座標がともに$0$以上の整数である点を,ここでは格子点とよぶ.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へ,両端点がともに格子点であり長さが$1$の線分を用いて,格子点$(0,\ 0)$から順に最も少ない本数でつなぐ方法を数える.例えば,格子点$(0,\ 0)$から格子点$(3,\ 1)$へつなぐ方法の数は$4$である.次の問いに答えよ.

(1)格子点$(0,\ 0)$から格子点$(4,\ 0)$へつなぐ方法の数と,格子点$(0,\ 0)$から格子点$(2,\ 2)$へつなぐ方法の数を,それぞれ求めよ.
(2)条件$k+\ell=5$を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を求めよ.
(3)条件$k+\ell=n (n \geqq 1)$を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を$n$を用いて表せ.
(4)条件$k+\ell=n$($k$と$\ell$はともに偶数で,$n \geqq 2$)を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を$n$を用いて表せ.
岡山大学 国立 岡山大学 2015年 第3問
自然数$n=1,\ 2,\ 3,\ \cdots$に対して,関数$f_n(x)=x^{n+1}(1-x)$を考える.

(1)曲線$y=f_n(x)$上の点$(a_n,\ f_n(a_n))$における接線が原点を通るとき,$a_n$を$n$の式で表せ.ただし,$a_n>0$とする.
(2)$0 \leqq x \leqq 1$の範囲で,曲線$y=f_n(x)$と$x$軸とで囲まれた図形の面積を$B_n$とする.また,$(1)$で求めた$a_n$に対して,$0 \leqq x \leqq a_n$の範囲で,曲線$y=f_n(x)$,$x$軸,および直線$x=a_n$で囲まれた図形の面積を$C_n$とする.$B_n$および$C_n$を$n$の式で表せ.
(3)$(2)$で求めた$B_n$および$C_n$に対して,極限値$\displaystyle \lim_{n \to \infty} \frac{C_n}{B_n}$を求めよ.ただし,$\displaystyle \lim_{n \to \infty} \left( 1+\frac{1}{n} \right)^n$が自然対数の底$e$であることを用いてよい.
名古屋工業大学 国立 名古屋工業大学 2015年 第1問
次の問いに答えよ.

(1)$x \geqq 1$のとき,不等式$2 \sqrt{x}>1+\log x$が成り立つことを証明せよ.
(2)関数$y=x \log x (x>0)$のグラフを曲線$C$とする.定数$a$に対し,曲線$C$の接線で点$(a,\ 0)$を通るものは何本あるか.
(3)$(2)$で定められた曲線$C$とその傾き$2$の接線および直線$x=e^{-2}$で囲まれた部分の面積を求めよ.
東北大学 国立 東北大学 2015年 第1問
$xy$平面において,次の式が表す曲線を$C$とする.
\[ x^2+4y^2=1,\quad x>0,\quad y>0 \]
$\mathrm{P}$を$C$上の点とする.$\mathrm{P}$で$C$に接する直線を$\ell$とし,$\mathrm{P}$を通り$\ell$と垂直な直線を$m$として,$x$軸と$y$軸と$m$で囲まれてできる三角形の面積を$S$とする.$\mathrm{P}$が$C$上の点全体を動くとき,$S$の最大値とそのときの$\mathrm{P}$の座標を求めよ.
東北大学 国立 東北大学 2015年 第2問
$xy$平面において,$3$次関数$y=x^3-x$のグラフを$C$とし,不等式
\[ x^3-x>y>-x \]
の表す領域を$D$とする.また,$\mathrm{P}$を$D$の点とする.

(1)$\mathrm{P}$を通り$C$に接する直線が$3$本存在することを示せ.
(2)$\mathrm{P}$を通り$C$に接する$3$本の直線の傾きの和と積がともに$0$となるような$\mathrm{P}$の座標を求めよ.
東北大学 国立 東北大学 2015年 第3問
サイコロを$3$回投げて出た目の数を順に$p_1$,$p_2$,$p_3$とし,$x$の$2$次方程式
\[ 2p_1x^2+p_2x+2p_3=0 \cdots\cdots (*) \]
を考える.

(1)方程式$(*)$が実数解をもつ確率を求めよ.
(2)方程式$(*)$が実数でない$2$つの複素数解$\alpha,\ \beta$をもち,かつ$\alpha\beta=1$が成り立つ確率を求めよ.
(3)方程式$(*)$が実数でない$2$つの複素数解$\alpha,\ \beta$をもち,かつ$\alpha\beta<1$が成り立つ確率を求めよ.
東北大学 国立 東北大学 2015年 第5問
$t>0$を実数とする.座標平面において,$3$点$\mathrm{A}(-2,\ 0)$,$\mathrm{B}(2,\ 0)$,$\mathrm{P}(t,\ \sqrt{3}t)$を頂点とする三角形$\mathrm{ABP}$を考える.

(1)三角形$\mathrm{ABP}$が鋭角三角形となるような$t$の範囲を求めよ.
(2)三角形$\mathrm{ABP}$の垂心の座標を求めよ.
(3)辺$\mathrm{AB}$,$\mathrm{BP}$,$\mathrm{PA}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{Q}$,$\mathrm{R}$とおく.$t$が$(1)$で求めた範囲を動くとき,三角形$\mathrm{ABP}$を線分$\mathrm{MQ}$,$\mathrm{QR}$,$\mathrm{RM}$で折り曲げてできる四面体の体積の最大値と,そのときの$t$の値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2015年 第3問
次の$\tocichi$,$\tocni$に答えよ.

\mon[$\tocichi$] 次の$5$つの定積分を求めよ.($\tocni \ (4)$で用いる.)

$\displaystyle I_1=\int_0^\pi x \sin x \, dx,\quad I_2=\int_0^\pi x^2 \cos x \, dx,\quad I_3=\int_0^\pi \sin^2 x \, dx$

$\displaystyle I_4=\int_0^\pi x \cos x \sin x \, dx,\quad I_5=\int_0^\pi \sin^2 x \cos x \, dx$

\mon[$\tocni$] 関数$y=\sin x$のグラフを曲線$C$とする.$C$上の点$\mathrm{O}(0,\ 0)$における接線を$\ell_1$,点$\mathrm{A}(\pi,\ 0)$における接線を$\ell_2$とする.
$\ell_1$と$\ell_2$の交点を$\mathrm{B}$,$C$上の点$\mathrm{P}(t,\ \sin t) (0 \leqq t \leqq \pi)$から$\ell_1$に下ろした垂線を$\mathrm{PQ}$とする.ただし,$t=0$のときは$\mathrm{Q}=\mathrm{P}$とする.$\mathrm{OQ}=s$とおく.

\mon[$(1)$] $\angle \mathrm{OBA}$の大きさを求めよ.
\mon[$(2)$] $s$を$t$を用いて表せ.
\mon[$(3)$] 線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
\mon[$(4)$] 曲線$C$と$2$直線$\ell_1$,$\ell_2$で囲まれた部分を,直線$\ell_1$の周りに$1$回転させてできる立体の体積$V$を求めよ.
東北大学 国立 東北大学 2015年 第4問
$a>0$を実数とする.$n=1,\ 2,\ 3,\ \cdots$に対し,座標平面の$3$点
\[ (2n\pi,\ 0),\quad \left( \left(2n+\frac{1}{2} \right) \pi,\ \frac{1}{{\left\{ \left( 2n+\displaystyle\frac{1}{2} \right)\pi \right\}}^a} \right),\quad ((2n+1)\pi,\ 0) \]
を頂点とする三角形の面積を$A_n$とし,
\[ B_n=\int_{2n\pi}^{(2n+1)\pi} \frac{\sin x}{x^a} \, dx,\qquad C_n=\int_{2n\pi}^{(2n+1)\pi} \frac{\sin^2 x}{x^a} \, dx \]
とおく.

(1)$n=1,\ 2,\ 3,\ \cdots$に対し,次の不等式が成り立つことを示せ.
\[ \frac{2}{\{(2n+1)\pi\}^a} \leqq B_n \leqq \frac{2}{(2n\pi)^a} \]
(2)極限値$\displaystyle \lim_{n \to \infty} \frac{A_n}{B_n}$を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{A_n}{C_n}$を求めよ.
東北大学 国立 東北大学 2015年 第1問
次の性質をもつ数列$\{a_n\}$を考える.
\[ \begin{array}{lll}
a_1=3 & & \\
a_{n+1}>a_n & \phantom{\frac{[ ]}{2}} & (n=1,\ 2,\ 3,\ \cdots) \\
a_n^2-2a_na_{n+1}+a_{n+1}^2=3(a_n+a_{n+1}) & \phantom{\frac{[ ]}{2}} & (n=1,\ 2,\ 3,\ \cdots)
\end{array} \]

(1)$n=1,\ 2,\ 3,\ \cdots$に対し,$a_n+a_{n+2}$を$a_{n+1}$を用いて表せ.
(2)$b_n=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$により定まる数列$\{b_n\}$の一般項を求めよ.
(3)数列$\{a_n\}$の一般項を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。