タグ「不等号」の検索結果

5ページ目:全4604問中41問~50問を表示)
岡山大学 国立 岡山大学 2016年 第1問
$p$は素数とする.正の整数$n$に対し,$p^d$が$n$の約数となる整数$d (d \geqq 0)$のなかで最大のものを$f(n)$とする.このとき以下の問いに答えよ.

(1)$p=3$,$n=3^2!$のとき$f(n)$の値を求めよ.
(2)$p=5$,$n=5^2!$のとき$f(n)$の値を求めよ.
(3)$m$が正の整数で$n=p^m!$のとき$f(n)$を求めよ.
岡山大学 国立 岡山大学 2016年 第3問
$a$は正の数とし,次の関数$y=f_a(x)$のグラフの変曲点を$\mathrm{P}$とする.
\[ f_a(x)=axe^{-\frac{x}{a}} \quad (x \geqq 0) \]
このとき以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)$a$が区間$1 \leqq a \leqq 2$全体を動くとき,点$\mathrm{P}$が描く曲線$C$の概形を図示せよ.
(3)$x \geqq 0$における曲線$y=f_1(x)$,$y=f_2(x)$と$(2)$の曲線$C$の$3$曲線で囲まれた部分の面積を求めよ.
九州大学 国立 九州大学 2016年 第1問
座標平面において,$x$軸上に$3$点$(0,\ 0)$,$(\alpha,\ 0)$,$(\beta,\ 0) (0<\alpha<\beta)$があり,曲線$C:y=x^3+ax^2+bx$が$x$軸とこの$3$点で交わっているものとする.ただし,$a,\ b$は実数である.このとき,以下の問いに答えよ.

(1)曲線$C$と$x$軸で囲まれた$2$つの部分の面積の和を$S$とする.$S$を$\alpha$と$\beta$の式で表せ.
(2)$\beta$の値を固定して,$0<\alpha<\beta$の範囲で$\alpha$を動かすとき,$S$を最小とする$\alpha$を$\beta$の式で表せ.
九州工業大学 国立 九州工業大学 2016年 第1問
座標平面上の曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と点$\mathrm{P}(s,\ t) (s>0,\ t>0,\ st<1)$を考える.また,$u=st$とする.点$\mathrm{P}$を通る曲線$C$の$2$本の接線をそれぞれ$\ell_1,\ \ell_2$とし,これらの接線と曲線$C$との接点をそれぞれ$\displaystyle \mathrm{A} \left( a,\ \frac{1}{a} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{1}{b} \right)$とする.ただし,$a<b$とする.以下の問いに答えよ.

(1)$a,\ b$を$s,\ t$を用いて表せ.
(2)$2$点$\mathrm{E}(a,\ 0)$,$\mathrm{F}(b,\ 0)$を考える.台形$\mathrm{ABFE}$の面積を$u$を用いて表せ.
(3)$\triangle \mathrm{PAB}$の面積を$u$を用いて表せ.
(4)$(3)$で求めた$\triangle \mathrm{PAB}$の面積を$S(u)$とする.$S(u)$は区間$0<u<1$で減少することを示せ.
(5)点$\mathrm{P}$が$2$点$(3,\ 0)$,$(0,\ 1)$を結ぶ線分上の端点以外にあるものとする.このとき,$\triangle \mathrm{PAB}$の面積が最小となる点$\mathrm{P}$の座標を求めよ.また,そのときの面積を求めよ.
九州大学 国立 九州大学 2016年 第2問
$t$を$0<t<1$を満たす実数とする.面積が$1$である三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$をそれぞれ$2:1$,$t:1-t$,$1:3$に内分する点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$\mathrm{AE}$と$\mathrm{BF}$,$\mathrm{BF}$と$\mathrm{CD}$,$\mathrm{CD}$と$\mathrm{AE}$の交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)$3$直線$\mathrm{AE}$,$\mathrm{BF}$,$\mathrm{CD}$が$1$点で交わるときの$t$の値$t_0$を求めよ.



以下,$t$は$0<t<t_0$を満たすものとする.


\mon[$(2)$] $\mathrm{AP}=k \mathrm{AE}$,$\mathrm{CR}=\ell \mathrm{CD}$を満たす実数$k,\ \ell$をそれぞれ求めよ.
\mon[$(3)$] 三角形$\mathrm{BCQ}$の面積を求めよ.
\mon[$(4)$] 三角形$\mathrm{PQR}$の面積を求めよ.
鳴門教育大学 国立 鳴門教育大学 2016年 第1問
$a$を実数とするとき,不等式$|n-a|+|n-6| \leqq 6$をみたす整数$n$の個数を求めなさい.
金沢大学 国立 金沢大学 2016年 第1問
座標空間内に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 3,\ 0)$,$\mathrm{B}(0,\ 6,\ 0)$をとり,さらに$1<a<3$を満たす定数$a$に対して点$\mathrm{P}(t,\ ta,\ ta)$をとる.ただし,$t$は$t>0$の範囲を動くものとする.次の問いに答えよ.

(1)点$\mathrm{P}$から$xy$平面に垂線$\mathrm{PH}$を下ろす.点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{H}$が線分$\mathrm{AB}$上にあるときの$t$の値を求め,そのときの点$\mathrm{H}$の座標を$a$を用いて表せ.



以下,点$\mathrm{H}$は線分$\mathrm{AB}$上にあるとする.


\mon[$(3)$] 点$\mathrm{M}$を線分$\mathrm{AB}$の中点とする.$\mathrm{AH}:\mathrm{HM}$の比の値$\displaystyle \frac{\mathrm{AH}}{\mathrm{HM}}$を求めよ.
\mon[$(4)$] 四面体$\mathrm{OPMH}$の体積が$2$となるような$a$の値を求めよ.
金沢大学 国立 金沢大学 2016年 第3問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がそれぞれ$1$個ずつのサイコロを同時に投げ,出た目を大きさの順に$x_1 \leqq x_2 \leqq x_3$とする.$x_1=x_2=x_3$のときは,もう一度$3$人でサイコロ投げを行う.$x_1 \leqq x_2<x_3$のときは,$x_3$を出した者が勝者となり,サイコロ投げを終了する.$x_1<x_2=x_3$のときは,$x_1$を出した者は去り,残りの$2$人で異なる目が出るまでサイコロ投げを続け,大きい目を出した者が勝者となり,サイコロ投げを終了する.次の問いに答えよ.

(1)$1$回目のサイコロ投げで$\mathrm{A}$が$3$を出して勝者となる場合の数を求めよ.
(2)$1$回目のサイコロ投げで$\mathrm{A}$が勝者となる場合の数を求めよ.
(3)$1$回目のサイコロ投げで勝者が決まる場合の数を求めよ.
(4)$2$回目のサイコロ投げで勝者が決まる場合の数を求めよ.
金沢大学 国立 金沢大学 2016年 第4問
$a,\ b$を実数とする.$f(x)=2 \sqrt{1+x^2}-ax^2$とし,$x$についての方程式$f(x)=b$を考える.次の問いに答えよ.

(1)$a>0$のとき,関数$f(x)$の最大値を求めよ.
(2)方程式$f(x)=b$の異なる実数解の個数が最も多くなるときの点$(a,\ b)$の範囲を図示せよ.
埼玉大学 国立 埼玉大学 2016年 第3問
次の問いに答えよ.

(1)$\displaystyle f(x)=\frac{e^x}{x^2+3x+1}$とする.$x>0$の範囲で$f(x)$が最小になる$x$の値と,そのときの$f(x)$の値を求めよ.
(2)$a>0$とする.曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と$2$つの直線$\ell_1:y=2e^ax$,$\ell_2:y=(a^2+3a+1)x$を考える.$C$と$\ell_1$と$\ell_2$で囲まれる部分を$D$とする.

\mon[(ア)] $C$と$\ell_1$の交点,および,$C$と$\ell_2$の交点の座標を求めよ.
\mon[(イ)] $(1)$を用いて$2e^a>a^2+3a+1$であることを示せ.ただし,$e=2.7182 \cdots$であることは用いてよい.
\mon[(ウ)] $D$の面積を$a$を用いて表せ.
\mon[(エ)] $D$の面積を最小にする$a$の値と,そのときの$D$の面積を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。