タグ「不等号」の検索結果

458ページ目:全4604問中4571問~4580問を表示)
名古屋市立大学 公立 名古屋市立大学 2010年 第2問
負でない実数を$a$とする.$xy$平面上で$\displaystyle 0 \leqq x \leqq a,\ 0 \leqq y \leqq \frac{1}{1+x}$を満たす領域を$A$とし,$A$を$x$軸のまわりに$1$回転してできる立体の体積を$V_1$,$y$軸のまわりに$1$回転してできる立体の体積を$V_2$とする.次の問いに答えよ.

(1)$V_1$を求めよ.
(2)$V_2$を求めよ.
(3)$V_1-V_2$が最大となるときの$a$の値を$p$とおく.$p$を求め,$p<1$を示せ.
(4)$p<a<1$において$V_1=V_2$となる$a$が存在することを示せ.ただし,$\log 2<0.7$を使用してもよい.
高知工科大学 公立 高知工科大学 2010年 第3問
関数列
\[ f_n(x)=x^{n-1},\quad g_n(x)=\sum_{k=1}^n (-1)^{k-1}f_k(x) \quad (n=1,\ 2,\ \cdots) \]
について,次の各問に答えよ.

(1)$\displaystyle F_n(x) = \int_0^x f_n(t) \, dt$を求めよ.
(2)$\{g_n(x)\}$が数列として収束するための実数$x$の条件を求めよ.また,$x$がこの条件を満たすとき$\displaystyle g(x)=\lim_{n \to \infty}g_n(x)$とおく.
\[ \int_0^x g(t) \, dt \]
を求めよ.
(3)(1)の$F_n(x)$について
\[ -F_{n+1}(1) \leqq \int_0^1 \frac{(-1)^n f_{n+1}(t)}{1+t} \, dt \leqq F_{n+1}(1) \]
が成り立つことを証明せよ.
(4)無限級数
\[ 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +(-1)^{n-1} \frac{1}{n}+\cdots \]
の収束,発散について調べ,収束すればその和を求めよ.
滋賀県立大学 公立 滋賀県立大学 2010年 第1問
実数$a,\ b,\ c,\ d$を成分とする行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換によって,点$\mathrm{P}(1,\ 0)$は点$\mathrm{Q}(0,\ -2)$に移され,$\mathrm{Q}$は点$\mathrm{R}(1,\ 1)$に移されるとする.また,行列$B=k \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とおくとき,$B^2$の表す$1$次変換によって$\mathrm{P}$は$\mathrm{Q}$に移されるとする.ただし,$k$は正の実数とし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.

(1)$A$を求めよ.
(2)$\theta,\ k$を求めよ.
(3)$AB^3$の表す$1$次変換による点$(0,\ 1)$の像を求めよ.
滋賀県立大学 公立 滋賀県立大学 2010年 第3問
$a,\ b,\ p,\ q$を実数として,未知数$x$の方程式
\[ p(x^2+ax+b) +x-q=0 \cdots (*) \]
を考える.

(1)$p$がどのような値であっても方程式$(*)$がつねに実数解をもつためには,$a^2-4b \geqq 0$が必要条件であることを示せ.
(2)$a^2-4b \geqq 0$とし,$\alpha,\ \beta \ (\alpha \leqq \beta)$を方程式$x^2+ax+b=0$の$2$つの実数解とする.このとき,$p$がどのような値であっても方程式$(*)$がつねに実数解をもつのは$q$がどのような範囲$R$にあるときか答えよ.
(3)$a^2-4b \geqq 0$で$q$が$(2)$で求めた範囲$R$にあるとき,方程式$(*)$は範囲$R$に少なくとも$1$つの解をもつことを示せ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
関数$\displaystyle f_n(x)=x-\frac{x^2}{2}+\frac{x^3}{3}- \cdots +\frac{(-1)^{n-1}x^n}{n} \ $(ただし$x \geqq 0,\ n=1,\ 2,\ \cdots$)について,次の問いに答えよ.

(1)導関数$\displaystyle \frac{d}{dx}f_n(x)$を求めよ.
(2)$n$が偶数のとき,$f_n(x) \leqq \log (1+x)$,$n$が奇数のとき$f_n(x) \geqq \log (1+x)$であることを示せ.
(3)(2)を利用して$\displaystyle \log \frac{6}{5}$の値を,小数第3位を四捨五入して小数第2位まで求めよ.
(4)$\displaystyle \frac{1}{250}+\frac{1}{251}+\cdots +\frac{1}{299}+\frac{1}{300}$の値を,小数第3位を四捨五入して小数第2位まで求めよ.
滋賀県立大学 公立 滋賀県立大学 2010年 第4問
$a$は定数で,$1<a<e$とする.曲線$C_1:y=x+\log x$上に点$\mathrm{P}(a,\ a+\log a)$,曲線$C_2:y=-\log x$上に点$\mathrm{Q}(a,\ -\log a)$がある.ただし,$e$は自然対数の底である.

(1)$\mathrm{P}$における$C_1$の接線を$\ell_1$,$\mathrm{Q}$における$C_2$の接線を$\ell_2$とする.このとき,$3$直線$x=0,\ \ell_1,\ \ell_2$で囲まれた部分の面積$S$を$a$を用いて表せ.
(2)$C_1$と$3$直線$y=0,\ x=1,\ x=a$で囲まれた部分を$R_1$,$C_2$と2直線$y=0,\ x=a$で囲まれた部分を$R_2$とする.また,$R_1,\ R_2$を$x$軸の周りに$1$回転させてできる立体をそれぞれ$B_1,\ B_2$とする.このとき,$B_1$から$B_2$を除いた部分の体積$V$を求めよ.
京都府立大学 公立 京都府立大学 2010年 第1問
以下の問いに答えよ.

(1)$\sqrt{5}$が無理数であることを証明せよ.
(2)$\alpha$を$2$次方程式$x^2-4x-1=0$の解とするとき,$(\alpha-a)(\alpha-b)=1+c$を満たす自然数の組$(a,\ b,\ c)$をすべて求めよ.
(3)座標平面上の点$(s,\ t)$で$s$と$t$のどちらも整数となるものを格子点と呼ぶ.連立不等式
\[ \left\{
\begin{array}{l}
y \geqq 3x^2-12x-3 \\
y \leqq 0
\end{array}
\right. \]
の表す領域を$D$とする.$k^2-4k-1<0$を満たす整数$k$に対して,直線$\ell:x=k$上にあり,かつ,$D$に含まれる格子点の個数を$N_k$とする.

(i) $N_k$を$k$を用いて多項式で表せ.
(ii) $D$に含まれる格子点の総数を求めよ.
京都府立大学 公立 京都府立大学 2010年 第3問
定数$a$を正の実数とする.放物線$C:y=ax^2$上の点$\mathrm{P}$の$x$座標を$t$とする.$\mathrm{P}$における$C$の法線を$\ell$とし,$C$と$\ell$で囲まれた部分の面積を$S$とする.ただし,$t>0$とする.以下の問いに答えよ.

(1)$C$と$\ell$の$\mathrm{P}$以外の交点を$\mathrm{Q}$とする.$\mathrm{Q}$の$x$座標を$a,\ t$を用いて表せ.
(2)$S$を$a,\ t$を用いて表せ.
(3)$S$が最小となるときの$t$を$a$を用いて表せ.
大阪府立大学 公立 大阪府立大学 2010年 第5問
$k$を正の実数とし,$xy$平面上の$2$曲線
\[ C_1:y=-x^3+kx,\quad C_2:x^2+y^2=k \]
を考える.

(1)$C_1$と$C_2$の共有点の個数を求めよ.
(2)$C_1$と$C_2$が$4$つの共有点を持つとする.$x \geqq 0,\ y \geqq 0$の範囲において,$C_1$と$C_2$で囲まれた$2$つの部分の面積をそれぞれ求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第2問
平面上に4点O,A,B,Cがあり,点Oを始点とするそれぞれの位置ベクトルを$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$とし,
\[ |\overrightarrow{a}|=\sqrt{2}, |\overrightarrow{\mathrm{b}}|=\sqrt{10}, \overrightarrow{a} \cdot \overrightarrow{b}=2, \overrightarrow{a} \cdot \overrightarrow{c}=8, \overrightarrow{b} \cdot \overrightarrow{c}=20 \]
が成り立つとする.このとき,次の問いに答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)点Cから直線ABに下ろした垂線と直線ABの交点をHとする.このとき,ベクトル$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.また,$|\overrightarrow{\mathrm{CH}}|$を求めよ.
(3)実数$s,\ t$に対して,点Pを
\[ \overrightarrow{\mathrm{OP}}=s \overrightarrow{a}+t \overrightarrow{b} \]
で定める.$s,\ t$が条件
\[ (s+t-1)(s+3t-3) \leqq 0 \]
を満たしながら変化するとき,$|\overrightarrow{\mathrm{CP}}|$の最小値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。