タグ「不等号」の検索結果

457ページ目:全4604問中4561問~4570問を表示)
兵庫県立大学 公立 兵庫県立大学 2010年 第5問
関数$f(x)$を次のように定める.
\[ f(x)=\sqrt{1-x}+\sqrt{1+x} \quad (-1 \leqq x \leqq 1) \]
このとき次の問いに答えよ.

(1)$x=-1,\ x=1,\ y=f(x)$と$x$軸とで囲まれた図形$D$の面積を求めよ.
(2)図形$D$を$x$軸のまわりに回転してできる図形の体積を求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第3問
単位行列$E$の実数倍ではない行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$を考える.$A$で表わされる$xy$平面上の移動を$f$とする.

(1)$A^2=kE$を満たす実数$k$が存在するための必要十分条件は,$a+d=0$であることを示せ.
(2)$a+d=0$のとき,原点Oとは異なる点Pで,$f(P)$が直線OP上にあるものが存在すれば,$a^2+bc \geqq 0$であることを示せ.
(3)$a+d=0$かつ$a^2+bc \geqq 0$であるとする.このとき$\lambda=\sqrt{a^2+bc}$とおけば,$(A-\lambda E)(A+\lambda E)=O$が成り立つことを示せ.ただし,$O$は零行列とする.
(4)(3)の仮定のもとで,$\lambda=\sqrt{a^2+bc}$とおく.原点Oとは異なる点Pで,$\text{Q}=f(P)$とすれば,$\overrightarrow{\mathrm{OQ}}=\lambda \overrightarrow{\mathrm{OP}}$となるものが存在することを示せ.
県立広島大学 公立 県立広島大学 2010年 第1問
大小二つのサイコロを同時に振り,大きいサイコロの出た目を$a$,小さいサイコロの出た目を$b$とする.次の確率を求めよ.

(1)$a<5,\ b<5,\ a+b>5$を満たす確率
(2)$a,\ b,\ 5$を$3$辺とする三角形が鈍角三角形になる確率
(3)二つの$2$次方程式
\[ x^2+ax+b=0,\quad x^2+2abx+16=0 \]
のうち,少なくとも一方が実数解をもつ確率
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
原点をOとする座標空間において,2点A$(2,\ 0,\ 0)$,B$(0,\ 3,\ 0)$から等距離にある点の集合を平面Hとする.次の問いに答えよ.

(1)直線ABが平面Hに垂直であることを示せ.
(2)原点Oから平面Hに下ろした垂線の足を点Cとする.点Cの座標を求めよ.
(3)$d$を正の実数とする.PをH上の点とするとき,不等式$\text{OP} \leqq d$を満たす点Pの領域の面積を求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第4問
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$で表わす.

(1)すべての自然数$n$に対して,$S_n=2a_n-1$を満たす数列$\{a_n\}$の一般項$a_n$を求めよ.
(2)すべての自然数$n$に対して,$S_n=a_n+n^2-1$を満たす数列$\{a_n\}$の一般項$a_n$を求めよ.
(3)$a_1=1,\ a_2=1$とし,すべての自然数$n$に対して,$a_{n+2}=a_{n+1}+a_n$を満たす数列を$\{a_n\}$とする.このとき,すべての自然数$n$に対して,$S_n=a_{n+2}-1$および$S_n<3a_n$が成り立つことを示せ.
京都府立大学 公立 京都府立大学 2010年 第1問
以下の問いに答えよ.

(1)$\sqrt{5}$が無理数であることを証明せよ.
(2)$\alpha$を$2$次方程式$x^2-4x-1=0$の解とするとき,$(\alpha-a)(\alpha-b)=1+c$を満たす自然数の組$(a,\ b,\ c)$をすべて求めよ.
(3)座標平面上の点$(s,\ t)$で$s$と$t$のどちらも整数となるものを格子点と呼ぶ.連立不等式
\[ \left\{
\begin{array}{l}
y \geqq 3x^2-12x-3 \\
y \leqq 0
\end{array}
\right. \]
の表す領域を$D$とする.$k^2-4k-1<0$を満たす整数$k$に対して,直線$\ell:x=k$上にあり,かつ,$D$に含まれる格子点の個数を$N_k$とする.

(i) $N_k$を$k$を用いて多項式で表せ.
(ii) $D$に含まれる格子点の総数を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第1問
曲線$y=f(x)=x^3-x$上の点A$(a,\ f(a))$での接線を$\ell$とする.ただし$a>0$とする.次の問いに答えよ.

(1)接線$\ell$の方程式$y=g(x)$を求めよ.
(2)$y=f(x)$と$\ell$の接点以外の交点Bの座標$(b,\ f(b))$を求めよ.
(3)$x \leqq 2a$において,$f(x)-g(x)$の最大値とそのときの$x$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第2問
原点をOとする座標空間において,2点A$(2,\ 0,\ 0)$,B$(0,\ 3,\ 0)$から等距離にある点の集合を平面Hとする.次の問いに答えよ.

(1)直線ABが平面Hに垂直であることを示せ.
(2)原点Oから平面Hに下ろした垂線の足を点Cとする.点Cの座標を求めよ.
(3)$d$を正の実数とする.PをH上の点とするとき,不等式$\text{OP} \leqq d$を満たす点Pの領域の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
$xy$平面上に点P$_0$を原点とし,点P$_1$,P$_2$,$\cdots$,P$_n$が$y$軸上の正の部分にこの順に並んでいる.$y=x^2 \ (x>0)$上に点Q$_1$,Q$_2$,$\cdots$,Q$_n$がこの順に並んでおり,$k=1$から$n$に対し,$\angle \text{Q}_k \text{P}_{k-1} \text{P}_k= \angle \text{Q}_k \text{P}_k \text{P}_{k-1} = \theta$が成り立っている.$\displaystyle \frac{1}{\tan \theta}=t$とおくとき,次の問いに答えよ.

(1)点P$_1$,P$_2$,P$_3$の座標を求めよ.
(2)P$_n(0,\ y_n)$,Q$_n(x_n,\ x_n^2)$とするとき,$y_n$を$x_{n+1}$で表せ.
(3)点P$_n$の座標を推測して,その結果を数学的帰納法で証明せよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第1問
ある自然数$k \geqq 3$に対して行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \ $(ただし$b \neq 0$)が,$A^k=O$(零行列)を満たすとする.次の問いに答えよ.

(1)行列$A$は逆行列を持たないことを示せ.
(2)$A^2=O$であることを示せ.
(3)$0$でない実数を$p$,単位行列を$E$とおく.$A-pE$が逆行列を持つことを示し,逆行列を$a,\ b,\ p$で表せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。