タグ「不等号」の検索結果

45ページ目:全4604問中441問~450問を表示)
自治医科大学 私立 自治医科大学 2016年 第20問
初項$1$,公比$x(1-x)$の無限等比級数が収束するための$x$のとりうる範囲は,$a<x<b$となる.$5 |a+b|$の値を求めよ.
自治医科大学 私立 自治医科大学 2016年 第23問
曲線$C_1:y=x(x-a)(x-a-1)$と曲線$C_2:y=x(x-a)$について考える.$C_1$と$C_2$で囲まれたすべての図形の面積を$S_1$とし,$0 \leqq x \leqq a$で$C_1$と$C_2$によって囲まれた図形の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}=2$となるとき,$a$の値を求めよ.ただし,$a$は正の実数とする.
自治医科大学 私立 自治医科大学 2016年 第24問
曲線$\displaystyle y=\frac{x^3}{3}+\frac{1}{4x} (1 \leqq x \leqq 2)$の長さを$L$とする.$\displaystyle \frac{72}{59}L$の値を求めよ.
同志社大学 私立 同志社大学 2016年 第2問
$n$を正整数とし,$e$を自然対数の底とするとき,次の問いに答えよ.

(1)$a,\ b$を定数として,次の関数$f(x) (x>0)$の導関数$f^\prime(x)$を求めよ.
\[ f(x)=x^{n+1} \{a \cos (\pi \log x)+b \sin (\pi \log x) \} \]
(2)次の定積分の値をそれぞれ求めよ.
\[ I_n=\int_1^e x^n \cos (\pi \log x) \, dx,\quad J_n=\int_1^e x^n \sin (\pi \log x) \, dx \]
(3)次の極限値をそれぞれ求めよ.
\[ \lim_{n \to \infty} \frac{I_{n+1}}{I_n},\quad \lim_{n \to \infty} \frac{J_{n+1}}{J_n},\quad \lim_{n \to \infty} \frac{J_n}{I_n} \]
慶應義塾大学 私立 慶應義塾大学 2016年 第6問
ある人が破産したとき,すなわち,借りているお金の一部分しか返すことができなくなったとき,その人の財産(現在残っているものをお金にしたもの)の総額$A$を$n$人の債権者(お金を貸した人)にどう分配するかについて考える.債権者には債権額(貸したお金の額)の少ない順に番号が振られており,第$i$番目の債権者の債権額を$B_i$とすると,$B_i<B_{i+1} (i=1,\ \cdots,\ n-1)$が成り立っている.また,$\displaystyle B=\sum_{i=1}^n B_i$としたとき,$A<B$である.以下では$A=B$のときを含めて,第$i$番目の債権者の分配額$X_i$を,$B_i$の状況に応じて,次のルールに従って決める.


\mon[ケース$1$:] $\displaystyle A \leqq \frac{n}{2}B_1$のときは,$\displaystyle X_i=\frac{1}{n}A (i=1,\ \cdots,\ n)$とする.
\mon[ケース$2$:] $1 \leqq k \leqq n-1$に対して
\[ \frac{1}{2}B-\frac{1}{2} \sum_{j=k}^n (B_j-B_k) \leqq A \leqq \frac{1}{2}B-\frac{1}{2} \sum_{j=k+1}^n (B_j-B_{k+1}) \]
のときは
\[ X_i=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}B_i & (i=1,\ \cdots,\ k) \\
\displaystyle\frac{1}{2}B_k+\frac{1}{n-k} \left\{ A-\frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_k) \right\} & (i=k+1,\ \cdots,\ n)
\end{array} \right. \]
とする.
\mon[ケース$3$:] $1 \leqq k \leqq n-1$に対して
\[ \frac{1}{2}B+\frac{1}{2} \sum_{j=k+1}^n (B_j-B_{k+1}) \leqq A \leqq \frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_{k}) \]
のときは
\[ X_i=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}B_i & (i=1,\ \cdots,\ k) \\
B_i-\displaystyle\frac{1}{2}B_k-\frac{1}{n-k} \left\{ \frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_k)-A \right\} & (i=k+1,\ \cdots,\ n)
\end{array} \right. \]
とする.
\mon[ケース$4$:] $\displaystyle B-\frac{n}{2}B_1 \leqq A$のときは,$\displaystyle X_i=B_i-\frac{1}{n}(B-A) (i=1,\ \cdots,\ n)$とする.


(1)$n=2,\ B_1=60,\ B_2=180$としたとき,$A$が
\[ [$85$][$86$][$87$] \leqq A \leqq [$88$][$89$][$90$] \]
の範囲ならば,$X_1=30$となる.また,$X_2$が$X_1$の$4$倍となるのは,$A$の値が$2$通りあり,小さい順に$[$91$][$92$][$93$]$と$[$94$][$95$][$96$]$の場合である.
(2)$n=3,\ B_1=60,\ B_2=90,\ B_3=180$としたとき,$A=100$ならば,$X_2=[$97$][$98$][$99$]$,$X_3=[$100$][$101$][$102$]$であり,$A=220$ならば,$X_2=[$103$][$104$][$105$]$,$X_3=[$106$][$107$][$108$]$である.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)初項が$a_1$で公差が$d$である等差数列$\{a_n\}$について,$a_{27}=20$,$a_{37}=15$が成り立っている.このとき,$a_1=[ア]$であり,$d=[イ]$である.したがって$a_1+a_2+a_3+\cdots +a_n=[ウ]$となる.
(2)$2$曲線$y=4^x (x \geqq 0)$と$y=8^x (x \geqq 0)$と直線$x=1$に囲まれた部分を$D$とする.$D$の面積は$[エ]$であり,$D$を$x$軸のまわりに$1$回転してできる回転体の体積は$[オ]$であり,$D$を$y$軸のまわりに$1$回転してできる回転体の体積は$[カ]$である.
(3)双曲線
\[ C:\frac{x^2}{9}-\frac{y^2}{4}=1 \]
上の点$\displaystyle \mathrm{P} \left( \frac{3}{\cos \theta},\ 2 \tan \theta \right) (0<\theta<\frac{\pi}{2})$における接線$\ell$の方程式は$[キ]$であり,法線$m$の方程式は$[ク]$である.また,$m$と$x$軸の交点を$(X,\ 0)$とし$m$と$y$軸の交点を$(0,\ Y)$とすると,$X$の範囲は$[ケ]$であり,$Y$の範囲は$[コ]$である.
同志社大学 私立 同志社大学 2016年 第3問
座標空間内の$4$点$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ 1,\ 5)$,$\mathrm{C}(2,\ 3,\ -1)$,$\mathrm{P}(2 \cos \theta,\ \sin \theta,\ 0)$を考える.ただし,$0 \leqq \theta<2\pi$とする.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の両方に垂直で,大きさが$1$のベクトルをすべて求めよ.
(3)点$\mathrm{P}$から,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面$\alpha$に,下ろした垂線の足$\mathrm{H}$の座標を$\theta$を用いて表せ.
(4)四面体$\mathrm{PABC}$の体積$V$を$\theta$を用いて表せ.
(5)四面体$\mathrm{PABC}$の体積$V$の最大値と最小値を求めよ.
同志社大学 私立 同志社大学 2016年 第4問
数列$\{a_n\}$を
\[ a_1=5,\quad a_{n+1}=\frac{a_n}{2}+\frac{6}{\sqrt{a_n}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.$\displaystyle f(x)=\frac{x}{2}+\frac{6}{\sqrt{x}} (x>0)$として,次の問いに答えよ.

(1)閉区間$4 \leqq x \leqq 9$において,$f(x)$の最大値と最小値,導関数$f^\prime(x)$の最大値と最小値をそれぞれ求めよ.
(2)$4<a_n<9$を数学的帰納法を用いて示せ.
(3)$c=f(c)$を満たす正の実数$c$を求めよ.
(4)上の$(3)$で決定した$c$に対して,$\displaystyle 0<c-a_{n+1}<\frac{c-a_n}{2} (n=1,\ 2,\ 3,\ \cdots)$を示せ.
(5)極限値$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
明治大学 私立 明治大学 2016年 第1問
$a,\ b,\ c$は正の整数である.以下の問に答えなさい.

(1)$ab=1800$となる$a,\ b$の組は全部で$[ア][イ]$通りある.
(2)$a<b<c<10$となる$a,\ b,\ c$の組は全部で$[ウ][エ]$通りある.
(3)$12a=4b+3c$,$b<100$,$c<100$となる$a,\ b,\ c$の組は全部で$[オ][カ][キ]$通りある.
(4)$a+b=3c<100$となる$a,\ b,\ c$の組は全部で$\kakkofour{ク}{ケ}{コ}{サ}$通りある.
(5)$a+\log_3(b+c)=10$となる$a,\ b,\ c$の組は全部で$\kakkofive{シ}{ス}{セ}{ソ}{タ}$通りある.ただし,$3^{10}=59049$である.
明治大学 私立 明治大学 2016年 第3問
座標平面上で,曲線$y=ax^2+bx+2$を$C$とおく.また,直線$y=ax+b+2$を$\ell$とおく.ただし,$a,\ b$は定数とし,$a>0$とする.以下の問に答えなさい.

(1)曲線$C$と直線$\ell$がただ$1$つの共有点を持つための必要十分条件となる$a,\ b$の式を求めなさい.また,その共有点の座標を求めなさい.
(2)いま,曲線$C$と直線$\ell$が$2$つの交点を持ち,$2$交点の$x$座標の差の絶対値は$4$であるとする.また,曲線$C$と直線$\ell$で囲まれる部分の面積は$64$であるとする.このとき,これを満たす$a,\ b$の値を求めなさい.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。