タグ「不等号」の検索結果

442ページ目:全4604問中4411問~4420問を表示)
早稲田大学 私立 早稲田大学 2010年 第2問
$a$は定数で,$a>1$とする.座標平面において,

円 \quad $C:x^2+y^2=1$
直線 \ $\ell:x=a$

とする.
$\ell$上の点$\mathrm{P}$を通り円$C$に接する$2$本の接線の接点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とするとき,直線$\mathrm{AB}$は,点$\mathrm{P}$によらず,ある定点を通ることを示し,その定点の座標を求めよ.
早稲田大学 私立 早稲田大学 2010年 第4問
$k$は実数の定数とする.実数$x,\ y$に対して,次の条件$\mathrm{P}$,$\mathrm{Q}$を考える.\\
\quad $\mathrm{P}:x \geqq 0$\quad かつ \quad $y \geqq 0$\\
\quad $\mathrm{Q}:-kx+y \geqq 0$\quad かつ \quad $14x-(k-5)y \geqq 0$\\
このとき,$\mathrm{P}$が$\mathrm{Q}$の十分条件となるための$k$の範囲は,$k \leqq [コ]$である.また,$\mathrm{P}$が$\mathrm{Q}$の必要条件となるための$k$の範囲は$[サ] \leqq k \leqq [シ]$である.
早稲田大学 私立 早稲田大学 2010年 第2問
$xy$平面上の点$(x_1,\ y_1)$に対して,点$(x_2,\ y_2)$,$(x_3,\ y_3)$,$\cdots$を次の式で順に定める.
\[ \left( \begin{array}{c}
x_{n+1} \\
y_{n+1}
\end{array} \right)=\left\{ \begin{array}{ll}
\left( \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right) \left( \begin{array}{c}
x_{n} \\
y_{n}
\end{array} \right) & (y_n \geqq 0 \text{のとき}) \\
\left( \begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array} \right) \left( \begin{array}{c}
x_{n} \\
y_{n}
\end{array} \right) & (y_n<0 \text{のとき})
\end{array} \right. \]
以下の問に答えよ.

(1)$(x_1,\ y_1) = (-1,\ 2)$のとき,$(x_3,\ y_3)$を求めよ.
(2)$(x_1,\ y_1) = (1,\ 0)$のとき,$(x_5,\ y_5)$を求めよ.
(3)$x_1>0$かつ$y_1>0$のとき,$(x_4,\ y_4) = (x_1,\ y_1)$となることを示せ.
(4)$(x_n,\ y_n)=(x_1,\ y_1)$となる$2$以上の整数$n$が存在しないとき,点$(x_1,\ y_1)$はどのような範囲にあるかを図示せよ.
早稲田大学 私立 早稲田大学 2010年 第6問
放物線$y=3x^2-12x (m \leqq x \leqq m+2)$と$3$直線$y=0$,$x=m$,$x=m+2$で囲まれた$2$つの部分の面積の和を$S$とする.ただし,$m$は定数で$2<m<4$とする.このとき,$S$は$m=[テ]+\sqrt{[ト]}$で最小値$[ナ]+[ニ]\sqrt{[ヌ]}$をとる.ただし,$[ヌ]$はできる限り小さい自然数で答えること.
早稲田大学 私立 早稲田大学 2010年 第4問
$n$を正の整数とする.

(1)$x>y>0$とするとき,次の不等式を証明せよ.
\[ x^{n+1}-y^{n+1} > (n+1)(x-y)y^n \]
(2)$\displaystyle \left(1+\frac{1}{n}\right)^{n+1}$と$\displaystyle \left(1+\frac{1}{n+1}\right)^{n+2}$の大小を比較せよ.
金沢工業大学 私立 金沢工業大学 2010年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}$のとき,$\displaystyle x+\frac{1}{x}=\sqrt{[アイ]}$,$\displaystyle x^2+\frac{1}{x^2}=[ウ]$である.

(2)$|\abs{x-1|-2}=3$の解は$x=[エオ],\ [カ]$である.
(3)$2$つの$2$次関数$y=6x^2+2kx+k$,$y=-x^2+(k-6)x-1$のグラフが両方とも$x$軸と共有点をもたないような定数$k$の値の範囲は$[キ]<k<[ク]$である.
(4)$0^\circ \leqq \theta \leqq 180^\circ$で$\displaystyle \tan \theta=-\frac{4}{3}$のとき,$\displaystyle \cos \theta=\frac{[ケコ]}{[サ]}$であり,$\displaystyle \sin (180^\circ-\theta)=\frac{[シ]}{[ス]}$である.
(5)不等式$\displaystyle \frac{2x-5}{4}<\frac{x+4}{3} \leqq \frac{3x+1}{6}$の解は$\displaystyle [セ] \leqq x<\frac{[ソタ]}{[チ]}$である.
(6)$1$から$100$までの整数のうち,$4$の倍数かつ$6$の倍数である整数は$[ツ]$個あり,$4$の倍数または$6$の倍数である整数は$[テト]$個ある.
(7)$1$個のさいころを投げて,偶数の目が出たときはその目の数の$2$倍を得点とし,奇数の目が出たときはその目の数の$3$倍を得点とするゲームを行う.このとき,このゲームの得点の期待値は$\displaystyle \frac{[アイ]}{[ウ]}$である.
(8)図のように,直線$\ell$は中心を$\mathrm{O}$とする円と点$\mathrm{A}$において接している.また,$\ell$上の点$\mathrm{P}$と$\mathrm{O}$を通る直線と円との交点を図のように$\mathrm{B}$,$\mathrm{C}$とし,$\angle \mathrm{PAB}=115^\circ$であるとする.このとき,
\[ \angle \mathrm{ABC}=[エオ]^\circ,\quad \angle \mathrm{APC}=[カキ]^\circ \]
である.
(図は省略)
関西大学 私立 関西大学 2010年 第2問
$p$を$0 \leqq p<1$を満たす定数とし,$x$の関数$f(x)$を次のように定める.
\[ f(x)=|x+1|+|x-1|+|x-p| \]
以下の問いに答えよ.

(1)$\displaystyle p=\frac{1}{2}$として,$y=f(x)$のグラフの概形をかけ.
(2)$x$軸,$x=-1,\ x=1$と$y=f(x)$とで囲まれてできる図形の面積を$S$とする.$S$を$p$を用いて表せ.
(3)$S$を最小にする$p$の値と,そのときの$S$の値を求めよ.
金沢工業大学 私立 金沢工業大学 2010年 第3問
次の問いに答えよ.

(1)$\displaystyle \log_{10} \frac{8}{\sqrt[3]{5.4 \times 10^{-8}}}=[ア]+\frac{[イ]}{[ウ]} \log_{10}2-\log_{10}3$である.
(2)$0 \leqq x<\pi$のとき,$\sin 2x-\sqrt{3} \cos 2x=1$を満たす$x$の値は
\[ x=\frac{\pi}{[エ]},\quad \frac{[オ]}{[カキ]} \pi \]
である.
早稲田大学 私立 早稲田大学 2010年 第2問
$2$平面$\pi_1$,$\pi_2$がある.$\pi_1$は$3$点$(1,\ 1,\ 7)$,$(2,\ 1,\ 5)$,$(1,\ 2,\ 5)$を通り,$\pi_2$は$3$点$(2,\ 1,\ 5)$,$(2,\ 3,\ 4)$,$(6,\ 0,\ 5)$を通る.

(1)平面$\pi_2$上の点$(x,\ y,\ z)$は関係式$x+[ソ]y+[タ]z-[$4$][チ]=0$を満たす.
(2)$2$平面$\pi_1$,$\pi_2$の交線は点$\mathrm{A}(-2,\ [ツ],\ [テ])$を通る.
(3)$2$平面の交線に垂直で平面$\pi_1$に平行なベクトル$\overrightarrow{a}$は$([ト],\ [ナ],\ -2)$で,$2$平面の交線に垂直で平面$\pi_2$に平行なベクトル$\overrightarrow{b}$は$([$1$][ニ],\ 10,\ -[ヌ])$である.
(4)$\mathrm{O}$を原点とすると,$2$平面$\pi_1$,$\pi_2$に接する半径$15$の球面の中心$\mathrm{P}$が
\[ \overrightarrow{\mathrm{OP}} = \overrightarrow{\mathrm{OA}} + s\overrightarrow{a} + t\overrightarrow{b} \quad (s>0,\ t>0) \]
を満たすとき,$\mathrm{P}$の座標は$([$2$][ネ],\ [$1$][ノ],\ -22)$である.
関西大学 私立 関西大学 2010年 第1問
$b,\ c$を実数とし,$2$次方程式$x^2+bx+c=0$の解を$\alpha,\ \beta$とする.次の$[ ]$をうめよ.

(1)$\alpha=\cos \theta$,$\beta=\sin \theta$となる$0 \leqq \theta<2\pi$が存在すれば,$b$と$c$は等式$[$1$]$を満たす.
(2)$\alpha=3 \cos \theta$,$\beta=\sin \theta$となる$0 \leqq \theta<2\pi$が存在するという条件のもとで,$b$のとりうる最大の値は$[$2$]$であり,このとき$\alpha=[$3$]$,$\beta=[$4$]$である.また,同じ条件のもとで$c$のとりうる最大の値は$[$5$]$であり,このとき$\theta=[$6$]$,$[$7$]$である.ただし,$[$6$]<[$7$]$とする.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。