タグ「不等号」の検索結果

439ページ目:全4604問中4381問~4390問を表示)
宮城教育大学 国立 宮城教育大学 2010年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\log_{\frac{1}{3}} \left( \frac{x}{3} \right) \cdot \log_{\frac{1}{3}}(3x)$を考える.

(i) $t=\log_{\frac{1}{3}}x$とおくとき,$y$を$t$を用いて表せ.
(ii) $\displaystyle \frac{1}{9} \leqq x \leqq 3$のとき,$y$の最大値と最小値を求めよ.

(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,関数$y=2 \sin^2 x-\sin x \cos x+3 \cos^2 x$の最大値と最小値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第1問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{E}$とする.また,線分$\mathrm{DE}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{X}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OX}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$t$を用いて表せ.
(2)点$\mathrm{P}$は線分$\mathrm{DE}$上にあり,$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{DE}}$をみたす.$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)(2)で定まる点$\mathrm{P}$について,直線$\mathrm{OP}$と3点$\mathrm{A},\ \mathrm{B},\ \mathrm{C}$の定める平面との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2010年 第2問
自然数$N$は$30$の倍数である.
\begin{align}
& U=\{x \;|\; x \text{は}1 \text{以上} N \text{以下の奇数} \}, \nonumber \\
& A=\{ x \;|\; x \in U,\ x \text{は}3 \text{の倍数} \}, \nonumber \\
& B=\{ x \;|\; x \in U,\ x \text{は}5 \text{の倍数} \}, \nonumber
\end{align}
とし,集合$U,\ A,\ B,\ A \cap B$の要素の個数をそれぞれ$u_N,\ a_N,\ b_N,\ c_N$と表す.次の問いに答えよ.

(1)$u_N,\ a_N,\ b_N,\ c_N$を$N$を用いて表せ.
(2)$N$以下の素数の個数を$P_N$とするとき,不等式$P_N \leqq u_N-a_N-b_N+c_N+2$を示せ.
(3)(2)の$P_N$について,$\displaystyle \frac{P_N}{N} \leqq \frac{1}{3}$を示せ.
宮城教育大学 国立 宮城教育大学 2010年 第4問
関数$\displaystyle f(x)=\frac{x+2}{x^2+4a}$を考える.ただし,$a$は$1 \leqq a<2$をみたす定数とする.導関数$f^\prime(x)$に対して,$f^\prime(x)=0$となる$x$のうち正のものを$\beta$とする.次の問いに答えよ.

(1)$x \geqq 0$における$f(x)$の増減を調べ,極値を求めよ.
(2)$f(x)=f(a)$をみたす$x$を求めよ.
(3)$\displaystyle a-1<\frac{2a}{2+a}$および$\beta<a$を示せ.
(4)$a-1 \leqq x \leqq a$において,$f(x)$の最小値が$\displaystyle \frac{4}{9}$であるとき,$f(x)$の最大値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第3問
座標平面上に点$\mathrm{B}_n(b_n,\ 0)$,$\displaystyle \mathrm{C}_n \left( \frac{b_n+b_{n+1}}{2},\ \frac{1}{2^{n-1}} \right) \ (n=1,\ 2,\ 3,\ \cdots)$がある.ただし,$b_n \leqq b_{n+1}$である.$2$点$\mathrm{B}_n$,$\mathrm{B}_{n+1}$間の距離を$\mathrm{B}_n \mathrm{B}_{n+1}$で表すとき,$\displaystyle \mathrm{B}_{n+1} \mathrm{B}_{n+2}=\frac{1}{2} \mathrm{B}_n \mathrm{B}_{n+1}$が成立している.$b_1=0,\ b_2=1$のとき,次の問いに答えよ.

(1)$d_n=\mathrm{B}_n \mathrm{B}_{n+1}$とおくとき,$d_n$を$n$を用いて表せ.
(2)$b_n$を$n$を用いて表せ.
(3)点$\mathrm{C}_n \ (n=1,\ 2,\ 3,\ \cdots)$は同一直線上にあることを示せ.
(4)$\log_{10}2=0.3010$として,$b_n<1.99$をみたす最大の自然数$n$を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第5問
関数$\displaystyle f(x)=\int_\alpha^x (t-\alpha)\cos (x-t) \, dt$を考える.ただし,$\alpha$は定数とする.次の問いに答えよ.

(1)$x$を定数とみて,$u=x-t$とおく.置換積分法を用いて,
\[ \int_\alpha^x (t-\alpha)\cos (x-t) \, dt=\int_0^{x-\alpha}(x-\alpha-u)\cos u \, du \]
となることを示せ.
(2)導関数$f^\prime(x)$を求めよ.
(3)関数$f(x)$を求めよ.
(4)曲線$y=f(x) \ (\alpha \leqq x \leqq \alpha+2\pi)$と$x$軸で囲まれた部分を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
京都教育大学 国立 京都教育大学 2010年 第6問
次の問に答えよ.

(1)次の定積分の値を計算せよ.
\[ \int_0^{\frac{1}{2}} \frac{1}{1-x^2} \, dx \]
(2)$0<x<\pi$とする.関数$\displaystyle y=\frac{1}{\sin x}$の極値を調べグラフの概形をかけ.
(3)$\displaystyle y=\frac{1}{\sin x}$が表す曲線と3直線$\displaystyle y=\frac{1}{2},\ x=\frac{\pi}{3},\ x=\frac{\pi}{2}$で囲まれた図形の面積を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第1問
次の問いに答えよ.

(1)円$x^2+y^2=1$と放物線$y=x^2+5$との共通の接線のうち,円と第$1$象限で接する接線の方程式を求めよ.
(2)$n \geqq 2$であるような自然数$n$に対して
\[ 1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots +(n-1) \cdot n \cdot (n+1)=(1+2+3+\cdots +n)(2+3+\cdots +n) \]
が成り立つことを示せ.
(3)関数$\displaystyle f(x)=\frac{\cos x}{\sqrt{1+\cos^2 x}} \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$の増減を調べ,最大値と最小値を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第6問
$y=2(\sin^3x-\cos^3x)-6 \sin x \cos x(\sin x-\cos x-1) \ (0 \leqq x \leqq \pi)$に対して,次の問いに答えよ.

(1)$t=\sin x-\cos x$とおくとき,$t$の範囲を求めよ.
(2)$y$を$t$で表せ.
(3)$y$の最大値と最小値を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第8問
$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\ J=\left( \begin{array}{cc}
8 & -13 \\
5 & -8
\end{array} \right)$とする.次の問いに答えよ.

(1)$J^2$を求めよ.
(2)$\alpha,\ \beta$を実数とする.$(\alpha E+\beta J)^2=cE+dJ$となる実数$c,\ d$を$\alpha,\ \beta$で表せ.
(3)$a,\ b$を$a^2<b$となる実数とする.実数$\alpha,\ \beta$に対して$X=\alpha E+\beta J$が$X^2+2aX+bE=O$を満たす時,$\alpha,\ \beta$を$a$と$b$で表せ.ただし,$O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とする.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。