タグ「不等号」の検索結果

436ページ目:全4604問中4351問~4360問を表示)
愛知教育大学 国立 愛知教育大学 2010年 第5問
直線$\displaystyle y=\frac{5-x}{4}$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{5-p}{4} \right) \ (p>1)$から曲線$C:y=1-x^2$へ2本の接線$\ell_1,\ \ell_2$を引くことができる.

(1)$\ell_1$と$C$との接点を$\mathrm{A}$,$\ell_2$と$C$との接点を$\mathrm{B}$とし,それぞれの$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.$\beta-\alpha$を$p$の式で表せ.
(2)$\angle \mathrm{APB}=\theta$とする.$\tan \theta$を$p$の式で表せ.ただし$0 \leqq \theta \leqq \pi$とする.
(3)点$\mathrm{P}$が$p>1$の範囲を動くとき,$\theta$が最大となるような点$\mathrm{P}$の座標を求めよ.
山梨大学 国立 山梨大学 2010年 第4問
関数$f(x)=(x^2+2x+a)e^{x+2}$が極大値と極小値をともに持つとし,次の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)極大値を$M$,極小値を$m$とするとき,$M \cdot m=-4$となるような$a$の値を求めよ.
(3)$a$を(2)で求めた値とするとき,関数$y=f(x)$の$y \leqq 0$と$x$軸で囲まれた図形の面積$S$を求めよ.
室蘭工業大学 国立 室蘭工業大学 2010年 第3問
数列$\{a_n\}$は
\[ a_1=\frac{1}{3},\quad (1-a_{n+1})(1+2a_n)=1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.

(1)すべての正の整数$n$に対して$\displaystyle a_n \geqq \frac{1}{3}$であることを,数学的帰納法によって証明せよ.
(2)$\displaystyle b_n=\frac{1}{a_n}$とおくとき,$b_{n+1}$を$b_n$を用いて表せ.
(3)数列$\{a_n\}$の一般項を求めよ.
旭川医科大学 国立 旭川医科大学 2010年 第3問
関数$\displaystyle f(x)=\sin x \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right)$の逆関数を$g(x) \ (-1 \leqq t \leqq 1)$とおくとき,次の問いに答えよ.

(1)$-1<x<1$のとき,$g^\prime(x)$を$x$を用いて表せ.
(2)曲線$y=\sin^2 x \ (0 \leqq x \leqq \pi)$と直線$y=t \ (0<t<1)$の2つの交点の$x$座標を,それぞれ$\alpha,\ \beta \ (\alpha<\beta)$とおくとき,$\displaystyle \int_\alpha^\beta \sin^2 x \, dx$を$t$と関数$g$を用いて表せ.
(3)$\displaystyle h(t)=\frac{2}{\pi}\int_\alpha^\beta \sin^2 x \, dx-\sqrt{1-t^2} \ (0<t<1)$とおくとき,$h(t)<0 \ (0<t<1)$を示し$h(t)$を最小にする$t$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2010年 第4問
次の問いに答えよ.

(1)関数$\displaystyle f(x)=\frac{1-\cos x}{x^2}$について,次の問いに答えよ.

$(ⅰ)$ $\displaystyle \lim_{x \to 0}f(x)$を求めよ.
$(ⅱ)$ 区間$0<x<\pi$で$f(x)$の増加減少を調べよ.

(2)三角形ABCにおいて,$\angle \text{A},\ \angle \text{B}$の大きさをそれぞれ$\alpha,\ \beta$とし,それらの角の対辺の長さをそれぞれ$a,\ b$で表す.$0<\alpha<\beta<\pi$のとき,次の不等式が成り立つことを証明せよ.
\[ \frac{b^2}{a^2}<\frac{1-\cos \beta}{1-\cos \alpha}<\frac{\beta^2}{\alpha^2} \]
鹿児島大学 国立 鹿児島大学 2010年 第5問
2次の正方行列$A,\ B$について,次の各問いに答えよ.

(1)行列$A=\left( \begin{array}{cc}
\displaystyle\frac{4}{5} & b \\
c & d
\end{array} \right)$は原点のまわりの回転移動を表し,$b>0$である.行列$A$を求めよ.
(2)行列$B$の表す移動(1次変換)に続いて行列$A$の表す移動を行うことで得られる合成移動(合成変換)は$y$軸に関する対称移動になる.行列$B$を求めよ.
(3)$B \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)$を満たす点$(x,\ y)$の集まりは直線となることを示せ.また,その直線を表す式を求めよ.
(4)$B \left( \begin{array}{c}
z \\
w
\end{array} \right)=\left( \begin{array}{c}
2 \\
1
\end{array} \right)$を満たす列ベクトル$\left( \begin{array}{c}
z \\
w
\end{array} \right)$を求めよ.また,この列ベクトルと自然数$n$に対し,$B^n \left( \begin{array}{c}
z \\
w
\end{array} \right)$を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第3問
次の各問いに答えよ.

(1)直線$\ell:y=ax+b$が原点を中心とする半径1の円と点$\displaystyle \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$で接しているとする.また,直線$\ell$は放物線$C:y=x^2-\sqrt{3}x+c$とも接しているとする.このとき,次の各問いに答えよ.

\mon[(a)] 定数$a,\ b$の値を求めよ.
\mon[(b)] 放物線$C$と直線$\ell$との接点の座標および定数$c$の値を求めよ.
\mon[(c)] 放物線$C$と直線$\ell$および$y$軸とで囲まれた図形の面積を求めよ.

(2)$0 \leqq \theta \leqq \pi$の範囲で,
\[ 5 \sin^2 \theta+14 \cos \theta-13 \geqq 0 \]
を満たす$\theta$の中で最大のものを$\alpha$とするとき,$\cos \alpha$と$\tan 2\alpha$の値を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第7問
袋の中に1の数字が書かれている球が5個,2の数字が書かれている球が3個,5の数字が書かれている球が2個の合計10個の球が入っている.1個の球を取り出して,その球に書かれている数を確認し,もとに戻すことを繰り返す.$i$回目に取り出した球に書かれている数を$X_i$とする.このとき,次の各問いに答えよ.

(1)$X_1$の確率分布を表で表せ.また,$X_1$の平均と分散を求めよ.
(2)$Z=X_1+X_2$の確率分布を表で表せ.また,確率$P(Z \leqq 4)$の値を求めよ.
(3)$W=X_1-X_2$とするとき,
\[ P(W \leqq a) \leqq P(Z \leqq 4) \]
を満たす整数$a$の最大値を求めよ.
(4)$S=X_1+X_2+\cdots +X_n$が$n+1$となる確率を求めよ.
帯広畜産大学 国立 帯広畜産大学 2010年 第1問
自然数$n$に対して,$\{a_n\}$は初項$a$,一般項$a_n$の数列であり,$\{b_n\}$ \\
は初項$b$,一般項$b_n$の数列である.座標平面上の点$\mathrm{P}_n(a_n,\ b_n)$, \\
点$\mathrm{P}_{n+1}(a_{n+1},\ b_{n+1})$と点$\mathrm{Q}_n(a_{n+1},\ b_n)$の座標は数列$\{a_n\}$と \\
$\{b_n\}$によって与えられる.また,点$\mathrm{P}_n$と点$\mathrm{P}_{n+1}$を通る直線の傾 \\
き$g_n$と$\triangle \mathrm{P}_n \mathrm{P}_{n+1} \mathrm{Q}_n$の面積$h_n$は,それぞれ$g_n=cb_n,\ h_n=dg_n$で定義され,各点の位置関係は右図のようになる.ここで,$h_n$を一般項とする数列を$\{h_n\}$で表し,また,$d>0$,任意の$n$について$a_{n+1}>a_n,\ h_n>0$と仮定する.
\img{3_2148_2010_1}{50}


(1)数列$\{a_n\},\ \{b_n\}$と$\{h_n\}$の中から等差数列と等比数列を見つけ,それぞれの公差または公比を$c$と$d$で表しなさい.
(2)数列$\{a_n\}$と数列$\{b_n\}$について,それぞれの一般項と,初項から第$n$項までの和を$a,\ b,\ c,\ d$および$n$で表しなさい.
(3)$\displaystyle d=\frac{1}{2}$のとき,$c$の値の範囲を求めなさい.
(4)$\displaystyle b=1,\ d=\frac{1}{2},\ 4h_2-6h_1-1=0$のとき,$c$の値を求めなさい.
(5)$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$と$\mathrm{Q}_1$の各点を用いて,$\alpha=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_2$,$\beta=\angle \mathrm{P}_2 \mathrm{P}_1 \mathrm{P}_3$,$\theta=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_3$と定義する.$\displaystyle b=1,\ c=\frac{2}{3},\ d=\frac{1}{2}$のとき,$\tan \alpha,\ \tan \beta$と$\tan \theta$を求めなさい.
旭川医科大学 国立 旭川医科大学 2010年 第2問
$\alpha>1$とする.$\displaystyle 0<t<\frac{\pi}{\alpha-1}$となる$t$に対して,$xy$平面上の点P$(\cos t,\ \sin t)$と点Q$(\cos \alpha t,\ \sin \alpha t)$を通る直線を$\ell_t$とする.次の問いに答えよ.

(1)直線$\ell_t$の方程式を
\[ f(t)x+g(t)y=h(t) \]
とする.$h(t)=-\sin (\alpha-1)t$のとき,$f(t),\ g(t)$を求めよ.
(2)行列$\left( \begin{array}{cc}
f(t) & g(t) \\
f^\prime(t) & g^\prime(t)
\end{array} \right)$は逆行列をもつことを示せ.
(3)$x(t),\ y(t)$を
\[ \left( \begin{array}{cc}
f(t) & g(t) \\
f^\prime(t) & g^\prime(t)
\end{array} \right) \left( \begin{array}{c}
x(t) \\
y(t)
\end{array} \right)=\left( \begin{array}{c}
h(t) \\
h^\prime(t)
\end{array} \right) \]
を満たすものとし,点R$(x(t),\ y(t))$が描く曲線を$C$とする.このとき,点Rは直線$\ell_t$上にあり,曲線$C$の点Rにおける接線は$\ell_t$と一致することを示せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。