タグ「不等号」の検索結果

427ページ目:全4604問中4261問~4270問を表示)
長崎大学 国立 長崎大学 2010年 第5問
$a,\ b$を$a>b>0$を満たす定数とし,
\[ \left\{
\begin{array}{l}
a_1=a, a_{n+1}=a_n^2+b_n^2 \quad (n=1,\ 2,\ 3,\ \cdots) \\
b_1=b, b_{n+1}=2a_nb_n \quad (n=1,\ 2,\ 3,\ \cdots)
\end{array}
\right. \]
で定義される数列$\{a_n\},\ \{b_n\}$を考える.次の問いに答えよ.

(1)数列$\{c_n\}$を$c_n=a_n+b_n \ (n=1,\ 2,\ 3,\ \cdots)$により定義するとき,その一般項$c_n$を$a,\ b$を用いて表せ.
(2)数列$\{a_n\},\ \{b_n\}$の一般項$a_n,\ b_n$を$a,\ b$を用いて表せ.
(3)極限値$\displaystyle \lim_{n \to \infty}\frac{b_n}{a_n}$が存在するかどうかを調べ,存在する場合はその値を求めよ.
(4)無限級数$\displaystyle \sum_{n=1}^\infty a_n$が収束するとき,$a+b<1$が成り立つことを証明せよ.
愛媛大学 国立 愛媛大学 2010年 第5問
次の問いに答えよ.

(1)次の連立不等式を解け.
\[ \left\{
\begin{array}{l}
4x^2-4x-15<0 \\
x^2-2x \geqq 0
\end{array}
\right. \]
(2)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$と$x \leqq y$の両方をみたす自然数の組$(x,\ y)$をすべて求めよ.
(3)方程式$\displaystyle \left( \log_2\sqrt{x}+\log_2x^2+\log_2\frac{1}{x} \right)^2=9$を解け.
(4)原点O,および3点A$(1,\ 0,\ 0)$,B$(0,\ 1,\ 0)$,C$(0,\ 0,\ 1)$がある.$0<s<1$に対して,線分AB,線分CAを$s:(1-s)$に内分する点を,それぞれP,Qとするとき,内積$\overrightarrow{\mathrm{OP}}\cdot \overrightarrow{\mathrm{OQ}}$を$s$を用いて表せ.
(5)等式$\displaystyle \int_0^{\frac{\pi}{4}} (x+a) \cos 2x \, dx=\frac{\pi}{8}$が成り立つとき,定数$a$の値を求めよ.
鳥取大学 国立 鳥取大学 2010年 第1問
次の問いに答えよ.

(1)直線$2x+y=16 \cdots \maru{1},\ 2x+3y=24 \cdots \maru{2}$の$x$切片と$y$切片の座標をそれぞれ求めよ.
(2)(1)で定めた直線\maru{1}と\maru{2}との交点の座標を求めよ.
(3)4つの不等式$2x+y \leqq 16,\ 2x+3y \leqq 24,\ x \geqq 0,\ y \geqq 0$の表す領域を$F$とする.$F$の面積を求めよ.
(4)点$(x,\ y)$が(3)で定めた領域$F$を動くとき,$x+y$の最大値と最小値を求めよ.
佐賀大学 国立 佐賀大学 2010年 第4問
$p$を$0<p<1$を満たす定数とする.関数$y=x^3-(3p+2)x^2+8px$の区間$0 \leqq x \leqq 1$における最大値と最小値を求めよ.
鳥取大学 国立 鳥取大学 2010年 第4問
$a,\ k$は定数であり,$0<k<1$とする.次の問いに答えよ.

(1)方程式$x=a+k \sin x$はただ一つの実数解をもつことを示せ.
(2)不等式$|\sin \theta| \leqq |\,\theta\,|$がすべての実数$\theta$に対して成立することを示せ.
(3)不等式$|\sin \alpha-\sin \beta| \leqq |\alpha-\beta|$がすべての実数$\alpha,\ \beta$に対して成立することを示せ.
(4)数列$\{x_n\}$を,$x_0=0,\ x_n=a+k \sin x_{n-1} \ (n=1,\ 2,\ \cdots)$によって定める.数列$\{x_n\}$は(1)の方程式$x=a+k \sin x$の解に収束することを示せ.
佐賀大学 国立 佐賀大学 2010年 第2問
以下の問いに答えよ.

(1)$n$と$r$を自然数とする.

\mon[(i)] $n \geqq 2,\ r \leqq n-1$のとき,${}_n \text{C}_r={}_{n-1} \text{C}_{r-1}+ {}_{n-1} \text{C}_r$を示せ.
\mon[(ii)] $n \geqq 3,\ r \leqq n-2$のとき,${}_n \text{C}_r={}_{n-1} \text{C}_{r-1}+ {}_{n-2} \text{C}_{r-1}+{}_{n-2} \text{C}_r$を示せ.
\mon[(iii)] $n \geqq 2,\ r \leqq n-1$のとき,$\displaystyle {}_n \text{C}_{r} = \sum_{k=1}^{n-r} {}_{n-k} \text{C}_{r-1}+{}_r \text{C}_r$を示せ.

(2)「あるアイスクリーム店で,6種類のアイスクリームから通常料金の半額で3種類のアイスクリームを選べるという,格安3点セールを実施している.異なる3種類の組合せは何通りあるか答えよ.」という問題に対して,以下のような答案があった.これを詳しく解説せよ.\\
(答案)\\
まず$4+3+2+1=10$である.\\
次に$3+2+1=6$となる.\\
さらに$2+1=3$である.\\
最後に1がある.\\
よって$10+6+3+1=20$なので求める組合せは20通りである.
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第3問
関数$f(t)=2(\cos t-\sin t),\ g(t)=\cos t+\sin t$を用いて媒介変数表示された,$xy$平面上の曲線$C:x=f(t),\ y=g(t)$がある.点A$\displaystyle \left( \frac{3}{4},\ \frac{3}{2} \right)$から$C$上の点P$(f(t),\ g(t))$までの距離APの2乗$\text{AP}^2$を$h(t)$とおく.

(1)$\displaystyle \frac{d}{dt}h(t)=0$となる$t$の値を$0 \leqq t \leqq 2\pi$の範囲ですべて求めよ.
(2)$C$は楕円であることを示せ.
(3)Pが$C$上を動くとき,APを最小にするPの座標,およびAPを最大にするPの座標を求めよ.
岡山大学 国立 岡山大学 2010年 第4問
平面上に半径1の円$C$がある.この円に外接し,さらに隣り合う2つが互いに外接するように,同じ大きさの$n$個の円を図(例1)のように配置し,その一つの円の半径を$R_n$とする.また,円$C$に内接し,さらに隣り合う2つが互いに外接するように,同じ大きさの$n$個の円を図(例2)のように配置し,その一つの円の半径を$r_n$とする.ただし,$n \geqq 3$とする.このとき,次の問いに答えよ.

(1)$R_6,\ r_6$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}n^2(R_n-r_n)$を求めよ.ただし,$\displaystyle \lim_{\theta \to 0}\frac{\sin \theta}{\theta}=1$を用いてよい.

\setlength\unitlength{1truecm}

\scalebox{1.5}{
(図は省略)
}
福井大学 国立 福井大学 2010年 第2問
表の出る確率が$p$,裏の出る確率が$1-p$のコインがある.このコインを投げ,その結果により,駒が2点A,Bの間を移動し,ポイントを獲得することを繰り返す次のようなゲームを行う.

ルールa) \ 駒はゲームを始めるとき点Aにいる.
ルールb) \ 駒はコイン投げで表が出ればそのときいる点にとどまり,裏が出ればもう一方の点に移動する.
ルールc) \ $k$回目のコイン投げの結果,駒が点Aにいるときは$3k$ポイント新たに獲得し,点Bにいるときは$k$ポイント新たに獲得する.$(k=1,\ 2,\ 3,\ \cdots)$

$n$を自然数として,以下の問いに答えよ.

(1)$n$回コインを投げた結果,駒が点Aにいる確率を$a_n$とおく.$a_n$を求めよ.
(2)$k$回目のコイン投げの結果により新たに獲得するポイントの期待値を$E_k$とおく.$0<p<1$のとき,$\displaystyle \sum_{k=1}^n E_k$を$n$と$p$を用いて表せ.
(3)(1)で求めた$a_n$を$p$の関数と考え,$f_n(p)$と書くとき,次の極限値を求めよ.
\[ \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^m f_n \left( \frac{k}{2m} \right) \]
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第4問
次の問いに答えよ.

(1)不定積分$\displaystyle \int \frac{1}{1+e^x} \, dx$を求めよ.
(2)実数$a$に対して定積分$\displaystyle \int_0^2 \left| \frac{1}{1+e^x}-\frac{1}{1+e^a} \right| \, dx$の値を$S(a)$とおく.$a$が$0 \leqq a \leqq 2$の範囲を動くとき,$S(a)$の最小値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。