タグ「不等号」の検索結果

426ページ目:全4604問中4251問~4260問を表示)
大分大学 国立 大分大学 2010年 第2問
曲線$y=x^2$を$C$とする.$k>0$について,直線$y=kx$を$\ell_1$とし,原点を通り直線$\ell_1$に垂直な直線を$\ell_2$とする.

(1)曲線$C$と直線$\ell_2$の交点の座標を求めなさい.
(2)曲線$C$と直線$\ell_1$とで囲まれる部分の面積を$S_1$,曲線$C$と直線$\ell_2$とで囲まれる部分の面積を$S_2$とする.$S_1,\ S_2$をそれぞれ$k$の式で表しなさい.
(3)$S_1+S_2$の最小値を求めなさい.
大分大学 国立 大分大学 2010年 第4問
$x,\ y$が不等式$|x-2|+|y-2| \leqq 2$を満たすとき,次の問いに答えなさい.

(1)この不等式の表す領域を図示しなさい.
(2)$x+2y$の最大値と最小値を求めなさい.
大分大学 国立 大分大学 2010年 第4問
$0<k<1$である定数$k$について,
\begin{eqnarray}
& & f(x)=\cos x -k \nonumber \\
& & g(x)=\sin x -k \tan x \nonumber
\end{eqnarray}
とおく.

(1)$\displaystyle 0<x < \frac{\pi}{2}$で,方程式$f(x)=0$は,ただ1つの実数解をもつことを示しなさい.
(2)$\displaystyle 0<x < \frac{\pi}{2}$で,方程式$g(x)=0$は,ただ1つの実数解をもつことを示しなさい.
(3)(2)での実数解を$\alpha$とする.定積分
\[ \int_0^\alpha g(x) \, dx \]
を$k$の式で表しなさい.
福井大学 国立 福井大学 2010年 第3問
$k$は実数で,$k>1$とする.このとき,Oを原点とする座標平面上の2つの曲線
\[ C_1:x^2+y^2=1,\quad C_2:y=kx^2-\frac{5}{4} \]
は,$x$座標が正となる2つの交点A,Bを持つ.以下の問いに答えよ.

(1)A,Bの$x$座標をそれぞれ$\alpha,\ \beta$とおく.$\alpha^2+\beta^2$および$\alpha^2 \beta^2$を$k$を用いて表せ.
(2)線分ABの長さを求めよ.
(3)$\angle \text{AOB}=150^\circ$のとき,$k$の値を求めよ.
熊本大学 国立 熊本大学 2010年 第1問
関数$y=\sin^3 x-\cos^3 x \ (0 \leqq x \leqq \pi)$について,以下の問いに答えよ.

(1)$\sin x-\cos x = t$とおいて,$t$のとり得る値の範囲を求めよ.
(2)$y$を$t$の式で表せ.
(3)$y$の最大値および最小値を求めよ.
熊本大学 国立 熊本大学 2010年 第4問
原点Oを中心として半径1の円の第1象限の部分$C$について考える.$C$上に3点A$\displaystyle \biggl( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \biggr)$,P$(1,\ 0)$,Q$(0,\ 1)$をとる.$s+t=1$を満たす$s,\ t \ (0<s<1,\ 0<t<1)$に対し,弧AQ上に点Xを2つのベクトル
\[ s^2\, \overrightarrow{\mathrm{OA}}-s\, \overrightarrow{\mathrm{OX}},\quad t\, \overrightarrow{\mathrm{OA}}-t^2\, \overrightarrow{\mathrm{OX}} \]
が垂直になるようにとる.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OX}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$\cos \theta$のとり得る値の範囲を求めよ.
(3)$\triangle$OAXの面積の最大値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第1問
$\displaystyle 0<\theta<\frac{\pi}{2}$とする.点Oを中心とする円周上に反時計回りに並んだ5点A,B,C,D,Eがあり,$\angle \text{AOB},\ \angle \text{BOC},\ \angle \text{COD},\ \angle \text{DOE}$はすべて$\theta$に等しい.$\alpha=2\pi-4\theta,\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}},\ t=\cos \theta$とする.

(1)$\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OD}}$および$\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OE}}$を$\overrightarrow{c}$と$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{0}}$が成り立つとき,$\alpha$は$\theta$に等しいことを示せ.
鳥取大学 国立 鳥取大学 2010年 第3問
次の問いに答えよ.

(1)2人乗りの車を持っているA君は,B君,C君とP地点からQ地点へ出かけることにした.B君はA君の車に乗り,C君は歩くこととし,3人同時にP地点を出発した.しばらくしてB君は車から降りて歩くこととし,A君はC君を迎えに引き返し,C君を乗せてQ地点へ向かうと,ちょうどQ地点でB君と一緒になった.車の速さはつねに毎時$v\;$kmで,歩く速さは2人とも毎時$p\;$km \ ($v>p$)とする.乗り降りに要する時間は無視する.

(2)P地点からQ地点までの平均の速さを求めよ.
(3)P地点からQ地点までの移動でどれだけの時間をA君は1人で車に乗っていたか,その割合を求めよ.

(4)2人乗りの車を持っているA君は,B$_1$君,B$_2$君,$\cdots$,B$_n$君とP地点からQ地点へ出かけることにした.最初B$_1$君はA君の車に乗り,残りの$(n-1)$人は歩くこととし,全員同時にP地点を出発した.しばらくしてB$_1$君は車から降りて歩くこととし,A君はB$_2$君を迎えに引き返し,B$_2$君を乗せてQ地点へ向かう.途中,歩いているB$_1$君と出会ったところでB$_2$君を降ろし,B$_3$君を迎えに引き返す.これを繰り返して最後のB$_n$君を乗せてQ地点へ向かうと,ちょうどQ地点で全員が一緒になった.車の速さはつねに毎時$v\;$kmで,歩く速さは全員同じで毎時$p\;$km$(v>p)$とする.乗り降りに要する時間は無視する.「$n$は,2以上の整数とする.」

(5)P地点からQ地点までの平均の速さを求めよ.
(6)P地点からQ地点までの移動でどれだけの時間をA君は1人で車に乗っていたか,その割合を求めよ.
長崎大学 国立 長崎大学 2010年 第6問
$xyz$空間において,底面の半径が2,高さが4である直円柱
\[ \left\{
\begin{array}{l}
x^2+y^2 \leqq 4 \\
0 \leqq z \leqq 4
\end{array}
\right. \]
を考える.この円柱内で,さらに
\[ \left\{
\begin{array}{l}
z \leqq (x-2)^2 \\
z \leqq y^2
\end{array}
\right. \]
を満たす点$(x,\ y,\ z)$からなる立体を$V$とする.次の問いに答えよ.

(1)立体$V$を平面$x=t \ (-2 \leqq t \leqq 2)$で切った切り口の面積を$A(t)$とする.$A(t)$を$t$を用いて表せ.
(2)立体$V$の体積を求めよ.
佐賀大学 国立 佐賀大学 2010年 第3問
放物線$y=-x^2+6x-7$を$C_1$とし,$C_1$の頂点をA,$C_1$上の点$(1,\ -2)$をBとする.点A,Bを通る直線を$\ell$とし,点A,Bを通る放物線$y=ax^2+bx+c$を$C_2$とする.ただし,$a,\ b,\ c$は実数,$a>0$である.このとき,次の問いに答えよ.

(1)点Aの座標を求めよ.
(2)直線$\ell$の方程式を求めよ.
(3)$b$と$c$を$a$を用いて表せ.
(4)$C_2$と$\ell$で囲まれた図形の面積を$a$を用いて表せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。