タグ「不等号」の検索結果

415ページ目:全4604問中4141問~4150問を表示)
金沢大学 国立 金沢大学 2010年 第1問
座標平面において,円$x^2+y^2=1$上の点P$(a,\ b) \ (0<b<1)$における接線を$\ell$とし,$\ell$と$x$軸の交点をQとする.点R$(4,\ 0)$と$\ell$の距離が2であるとき,次の問いに答えよ.

(1)点Pの座標$(a,\ b)$を求めよ.
(2)$\triangle$PQRの面積を求めよ.
金沢大学 国立 金沢大学 2010年 第2問
座標空間において,中心がA$(0,\ 0,\ a) \ (a>0)$で半径が$r$の球面
\[ x^2+y^2+(z-a)^2 = r^2 \]
は,点B$(\sqrt{5},\ \sqrt{5},\ a)$と点$(1,\ 0,\ -1)$を通るものとする.次の問いに答えよ.

(1)$r$と$a$の値を求めよ.
(2)点P$(\cos t,\ \sin t,\ -1)$について,ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を求めよ.さらに内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AP}}$を求めよ.
(3)$\triangle$ABPの面積$S$を$t$を用いて表せ.また,$t$が$0 \leqq t \leqq 2\pi$の範囲を動くとき,$S$の最小値と,そのときの$t$の値を求めよ.
金沢大学 国立 金沢大学 2010年 第3問
行列$A=\left( \begin{array}{cc}
0 & -r \\
-r & 0
\end{array} \right) \ (r>0)$と座標平面上の点P$_0(-1,\ 2)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$,$\cdots$,P$_n(x_n,\ y_n)$,$\cdots$は,式
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right) = A^n \left( \begin{array}{c}
-1 \\
2
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすものとする.次の問いに答えよ.

(1)$A^{2k},\ A^{2k+1} \ (k=1,\ 2,\ 3,\ \cdots)$を求めよ.
(2)$x_n,\ y_n \ (n=1,\ 2,\ 3,\ \cdots)$を求めよ.
(3)線分P$_{n-1}$P$_n$の長さを$d_n \ (n=1,\ 2,\ 3,\ \cdots)$とする.数列$\{d_n\}$の初項$d_1$と一般項$d_n$を求めよ.また,無限級数$\displaystyle \sum_{n=1}^{\infty} d_n$が収束し,その和が3となるような$r$の値を求めよ.
東京工業大学 国立 東京工業大学 2010年 第1問
$f(x) = 1- \cos x-x \sin x$とする.

(1)$0<x< \pi$において,$f(x) = 0$は唯一の解を持つことを示せ.
(2)$\displaystyle J =\int_0^{\pi} | f(x) | \, dx$とする.(1)の唯一の解を$\alpha$とするとき,$J$を$\sin \alpha$の式で表せ.
(3)(2)で定義された$J$と$\sqrt{2}$の大小を比較せよ.
東京工業大学 国立 東京工業大学 2010年 第4問
$a$を正の定数とする.原点をOとする座標平面上に定点A = A$(a,\ 0)$と,Aと異なる動点P = P$(x,\ y)$をとる.次の条件
\begin{eqnarray}
& & \text{AからPに向けた半直線上の点Qに対し} \nonumber \\
& & \frac{\text{AQ}}{\text{AP}} \leqq 2 \quad \text{ならば} \quad \frac{\text{QP}}{\text{OQ}} \leqq \frac{\text{AP}}{\text{OA}} \nonumber
\end{eqnarray}
を満たすPからなる領域を$D$とする.$D$を図示せよ.
名古屋大学 国立 名古屋大学 2010年 第2問
関数$f(x) = (x^2-x)e^{-x}$について,以下の問いに答えよ.必要ならば,任意の自然数$n$に対して
\[ \lim_{x \to +\infty} x^ne^{-x} = 0 \]
が成り立つことを用いてよい.

(1)$y = f(x)$のグラフの変曲点を求め,グラフの概形をかけ.
(2)$a > 0$とする.点$(0,\ a)$を通る$y = f(x)$のグラフの接線が1本だけ存在するような$a$の値を求めよ.また,$a$がその値をとるとき,$y = f(x)$のグラフ,その接線および$y$軸で囲まれた図形の面積を求めよ.
横浜国立大学 国立 横浜国立大学 2010年 第3問
$xy$平面上の点Aを次のルール($*$)に従って動かす試行を繰り返す.
\[ (*) \left\{
\begin{array}{l}
1 \text{個のさいころを投げ,} \\
(\text{A}) \; \text{1または2の目が出たとき,} \ x \text{軸の正の方向に1動かす.} \\
(\text{B}) \; \text{3または4の目が出たとき,} \ y \text{軸の正の方向に1動かす.} \\
(\text{C}) \; \text{5または6の目が出たとき,動かさない.}
\end{array}
\right. \]
Aは始め原点Oにある.直線$x+y=3$を$\ell$として,次の問いに答えよ.

(1)5回の試行後,Aが$(2,\ 1)$にある確率を求めよ.
(2)$n \geqq 3$に対し,$n$回の試行後,Aが$\ell$上にある確率を求めよ.
(3)Aが$\ell$上に来たとき,または(C)が合計2回生じたとき,試行を終了する.

(4)Aが$\ell$上に来て試行が終了する確率を求めよ.
(5)終了までの試行回数の期待値を求めよ.
横浜国立大学 国立 横浜国立大学 2010年 第2問
1個のいびつなさいころがある.$1,\ 2,\ 3,\ 4$の目が出る確率はそれぞれ$\displaystyle \frac{p}{2}$であり,$5,\ 6$の目が出る確率はそれぞれ$\displaystyle \frac{1-2p}{2}$である.ただし,$\displaystyle 0<p<\frac{1}{2}$とする.このさいころを投げて,$xy$平面上の点Qを次のように動かす.

\mon[(i)] 1または2の目が出たときには,Qを$x$軸の正の方向に1だけ動かす.
\mon[(ii)] 3または4の目が出たときには,Qを$y$軸の正の方向に1だけ動かす.
\mon[(iii)] 5または6の目が出たときには,Qを動かさない.

Qは最初原点$(0,\ 0)$にある.このさいころを$(n+1)$回投げ,Qが通った点(原点およびQの最終位置の点を含む)の集合を$S$とする.ただし,$n$は自然数とする.次の問いに答えよ.

(1)さいころを$(n+1)$回投げたとき,$S$が点$(1,\ n-1)$を含む確率を求めよ.
(2)さいころを$(n+1)$回投げたとき,$S$が領域$x+y<n$に含まれる確率を求めよ.
(3)さいころを$(n+1)$回投げたとき,$S$が点$(k,\ n-k)$を含むならば得点$2^k$点$(k=0,\ 1,\ \cdots,\ n)$が与えられ,$S$が領域$x+y<n$に含まれるならば得点0点が与えられるとする.得点の期待値を求めよ.
横浜国立大学 国立 横浜国立大学 2010年 第3問
次の問いに答えよ.

(1)$0<x<\pi$のとき,
\[ \sin x - x \cos x > 0 \]
を示せ.
(2)定積分
\[ I=\int_0^\pi |\sin x -ax| \, dx \quad (0<a<1) \]
を最小にする$a$の値を求めよ.
横浜国立大学 国立 横浜国立大学 2010年 第4問
$a,\ b$を正の実数とする.曲線
\[ C:\frac{x^2}{a^2}+\frac{(y-b)^2}{b^2}=1 \]
は領域$D:x^2+y^2 \leqq 1$に含まれている.次の問いに答えよ.

(1)$(a,\ b)$が存在する範囲を$ab$平面上に図示せよ.
(2)$C$が囲む部分の面積が最大になるときの$a,\ b$の値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。