タグ「不等号」の検索結果

409ページ目:全4604問中4081問~4090問を表示)
岐阜薬科大学 公立 岐阜薬科大学 2011年 第1問
$xy$平面上にある長方形$\mathrm{OPRS}$を底面とし,三角形$\mathrm{OST}$,三角形$\mathrm{PRQ}$,四角形$\mathrm{OPQT}$,四角形$\mathrm{RSTQ}$を側面とする五面体$\mathrm{OPQRST}$がある.五面体$\mathrm{OPQRST}$が$\mathrm{OP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{ST}=\mathrm{TO}=1$,$\angle \mathrm{TOP}=\angle \mathrm{OPQ}=\angle \mathrm{PQR}=\angle \mathrm{QRS}=\angle \mathrm{RST}=\angle \mathrm{STO}=\theta (90^\circ<\theta<120^\circ)$をみたしているとき,次の問いに答えよ.ただし,$2$点$\mathrm{O}$,$\mathrm{P}$の座標をそれぞれ$(0,\ 0,\ 0)$,$(1,\ 0,\ 0)$とし,$\displaystyle \sin \frac{\theta}{2}=a$とする.

(1)辺$\mathrm{OS}$の長さを$a$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$a$を用いて表せ.ただし,点$\mathrm{Q}$の$y$座標は正とする.
(3)五面体$\mathrm{OPQRST}$の体積$V$を$a$を用いて表せ.
岐阜薬科大学 公立 岐阜薬科大学 2011年 第3問
放物線と直線に関して,以下の問いに答えよ.

(1)放物線$y=x^2$と直線$y=k (k>0)$で囲まれた部分の面積$S(k)$を$k$を用いて表せ.
(2)放物線$y=1-x^2$と$x$軸とで囲まれた部分を直線$\displaystyle y=a \left( 0<a<\frac{1}{2} \right)$を折り目として折り返す.

(i) 重なっていない部分の面積$S$を$a$を用いて表せ.
(ii) 重なっていない部分のうちで,$x$軸の下側にある部分の面積を$S^\prime$とする.$S=2S^\prime$となる$a$の値を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2011年 第2問
$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(2,\ 0)$,$\mathrm{B}(1,\ \sqrt{3})$を頂点とする$\triangle \mathrm{OAB}$がある.点$\mathrm{O}$から辺$\mathrm{AB}$に引いた垂線を$\mathrm{OH}_1$とする.次に,点$\mathrm{H}_1$から辺$\mathrm{OA}$に引いた垂線を$\mathrm{H}_1 \mathrm{H}_2$,点$\mathrm{H}_2$から辺$\mathrm{OB}$に引いた垂線を$\mathrm{H}_2 \mathrm{H}_3$,点$\mathrm{H}_3$から辺$\mathrm{AB}$に引いた垂線を$\mathrm{H}_3 \mathrm{H}_4$とする.以下,辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{AB}$上に,この順で垂線を引くことを繰り返し,点$\mathrm{H}_n$を決め,線分$\mathrm{H}_{n-1} \mathrm{H}_n$の長さを$a_n (n \geqq 2)$とする.$a_1=\mathrm{OH}_1$とするとき,次の問いに答えよ.

(1)$a_2,\ a_3,\ a_4$を求めよ.
(2)$a_n$を$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
島根県立大学 公立 島根県立大学 2011年 第1問
次の問いに答えよ.

(1)$f(x)=x^2+bx+c$,$g(x)=x^2+(b+2)x+c$とする.$f(2011)=0$かつ$g(2010)=-1$のとき,$b$と$c$の値を求めよ.
(2)方程式$3^{2x}-2 \cdot 3^{x+1}=27$を解け.
(3)$\displaystyle \sin \alpha=\frac{1}{3},\ \cos \beta=-\frac{1}{2}$のとき,$\sin (\alpha+\beta)$,$\cos (\alpha-\beta)$,$\tan (\alpha-\beta)$の値を求めよ.ただし,$\displaystyle 0<\alpha<\frac{\pi}{2}$,$\displaystyle \frac{\pi}{2}<\beta<\pi$とする.
(4)多項式$P(x)$を$(x-5)$,$(x-7)$で割った余りがそれぞれ$3,\ 4$である.このとき,$P(x)$を$(x-5)(x-7)$で割った余りを求めよ.
横浜市立大学 公立 横浜市立大学 2011年 第1問
以下の問いに答えよ.

(1)関数
\[ f(x)=x \sin^2 x \quad (0 \leqq x \leqq \pi) \]
の最大値を与える$x$を$\alpha$とするとき,$f(\alpha)$を$\alpha$の分数式で表すと$[$1$]$となる.
(2)多項式
\[ a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2 \]
を因数分解すると$[$2$]$となる.
(3)$N$を与えられた自然数とし,$f(x)$および$g(x)$を区間$(-\infty,\ \infty)$で$N$回以上微分可能な関数とする.$f(x)$と$g(x)$から定まる関数を次のように定義する.$t$を与えられた実数として,
\[ \begin{array}{lll}
(f *_t g)(x) &=& \sum_{k=0}^N \displaystyle\frac{t^k}{2^k k!} f^{(k)}(x)g^{(k)}(x) \\
&=& \displaystyle f(x)g(x)+\frac{t}{2}f^\prime(x)g^\prime(x)+\cdots +\frac{t^N}{2^N N!} f^{(N)}(x)g^{(N)}(x)
\end{array} \]
とおく.ここに,$f^{(k)}(x)$は$f(x)$の第$k$次導関数である($g^{(k)}(x)$も同様である).$a$を実数,$n$を$N$以下の自然数とする.$f(x)=e^{2ax}$,$g(x)=x^n$にたいし,二項定理を用いて$(f *_t g)(x)$を計算すると$[$3$]$となる.
(4)関係式
\[ f(x)+\int_0^x f(t)e^{x-t} \, dt=\sin x \]
をみたす微分可能な関数$f(x)$を考える.$f(x)$の導関数$f^\prime(x)$を求めると,$f^\prime(x)=[$4$]$となる.$f(0)=[$5$]$であるから$f(x)=[$6$]$となる.
横浜市立大学 公立 横浜市立大学 2011年 第3問
平面上の点$\mathrm{A}$を中心とする半径$a$の円から,中心角が${60}^\circ$で$\mathrm{AP}=\mathrm{AQ}=a$となる扇形$\mathrm{APQ}$を切り取る.つぎに線分$\mathrm{AP}$と$\mathrm{AQ}$を貼り合わせて,$\mathrm{A}$を頂点とする直円錐$K$を作り,これを点$\mathrm{O}$を原点とする座標空間におく.

$\mathrm{A}$,$\mathrm{P}$はそれぞれ$z$軸,$x$軸上の正の位置にとり,扇形$\mathrm{APQ}$の弧$\mathrm{PQ}$は$xy$平面上の$\mathrm{O}$を中心とする円$S$になるようにする.
また弦$\mathrm{PQ}$から定まる$K$の側面上の曲線を$C$とする.
(図は省略)
以下の問いに答えよ.

(1)$S$の半径を$b$とする.$S$上の点$\mathrm{R}(b \cos \theta,\ b \sin \theta,\ 0) (0 \leqq \theta \leqq 2\pi)$に対し,$K$上の母線$\mathrm{AR}$と$C$の交点を$\mathrm{M}$とする.$b$と線分$\mathrm{AM}$の長さを$a$と$\theta$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OM}}$を$xy$平面に正射影したベクトルの長さを$r$とする.$r$を$a$と$\theta$を用いて表し,定積分
\[ \int_0^{2\pi} \frac{1}{2} \{r(\theta)\}^2 \, d\theta \]
を求めよ.ただし,ベクトル$\overrightarrow{\mathrm{OE}}=(a_1,\ a_2,\ a_3)$を$xy$平面に{\bf 正射影したベクトル}とは$\overrightarrow{\mathrm{OE}^\prime}=(a_1,\ a_2,\ 0)$のことである.
奈良県立医科大学 公立 奈良県立医科大学 2011年 第1問
$0$以上の任意の整数$i$に対して,$x$の$i$次式$g_i(x)$を$i=0$のとき$g_0(x)=1$,$i \geqq 1$のとき$\displaystyle g_i(x)=\frac{x(x+1) \cdots (x+i-1)}{i!}$と定義する.

(1)$\displaystyle f(x)=\sum_{i=0}^n a_ix^i$(但し$a_n \neq 0$)を$x$に関する実数係数の$n (\geqq 0)$次式とする.このとき,等式$\displaystyle f(x)=\sum_{i=0}^n c_i \, g_i(x)$が任意の実数$x$について成り立つような実数$c_i$($0 \leqq i \leqq n$,但し$c_n \neq 0$)が一意的に存在することを証明せよ.
(2)$(1)$において,$n>0$のとき等式$\displaystyle f(x)-f(x-1)=\sum_{i=1}^n c_i \, g_{i-1}(x)$が成り立つことを証明せよ.
(3)$F(x) (\neq 0)$を$x$に関する実数係数の$n (\geqq 0)$次式とし,任意の整数$a$に対して$F(a)$が整数であると仮定する.このとき,等式$\displaystyle F(x)=\sum_{i=0}^n d_i \, g_i(x)$が任意の実数$x$について成り立つような整数$d_i$($0 \leqq i \leqq n$,但し$d_n \neq 0$)が一意的に存在することを証明せよ.
福岡女子大学 公立 福岡女子大学 2011年 第1問
$2$次方程式$x^2+ax+b=0$は$2$つの複素数解$\alpha+i \beta$と$\alpha-i \beta$を持ち,$\alpha$と$\beta$は実数で,$\beta>0$とする.ただし,$i$は虚数単位である.次の問に答えなさい.

(1)$\alpha$と$\beta$を$a$と$b$を用いて表しなさい.
(2)$\alpha=\beta$であるとき,$2$次関数$y=x^2+ax+b$のグラフと,この放物線の軸,$x$軸,$y$軸とで囲まれる部分の面積を$\alpha$を用いて表しなさい.
福岡女子大学 公立 福岡女子大学 2011年 第2問
$\displaystyle f(x)=x^3-3ax^2-3bx+c,\ H(x)=\int f(x) \, dx$とおく.また,方程式$f^\prime(x)=0$は異なる解を持ち,$x=-1$はその$1$つの解とする.次の問に答えなさい.

(1)$f^\prime(x)=0$を満たすもう$1$つの解を$a$を用いて表しなさい.
(2)$\displaystyle a \leqq -\frac{1}{2}$のとき,$H(x)$の値が$x>0$でつねに増加するための$c$の値の範囲を求めなさい.
(3)$\displaystyle a>-\frac{1}{2}$のとき,$H(x)$の値が$x>0$でつねに増加するための$c$の値の範囲を求めなさい.
福岡女子大学 公立 福岡女子大学 2011年 第3問
箱の中に赤いボールが$m$個,白いボールが$n$個入っており,各ボールには異なる名前が付けられている.次の問に答えなさい.

(1)整数$l$を$1 \leqq l \leqq m+n$とする.箱から異なる$l$個のボールを取り出して並べる順列の総数を求めなさい.
(2)整数$k$を$1 \leqq k \leqq l$とする.$(1)$の順列のうち,先頭からかぞえて$k$番目に赤いボールが来る順列の総数を求めなさい.
(3)$l$人が順番にこの箱からボールを$1$つずつ取り出し,取り出したボールは元に戻さないとする.$k$番目の人が赤いボールを取り出す確率を求めなさい.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。