タグ「不等号」の検索結果

406ページ目:全4604問中4051問~4060問を表示)
大阪府立大学 公立 大阪府立大学 2011年 第3問
座標平面内において,楕円$\displaystyle x^2+\frac{y^2}{3}=1$の$x \geqq 0,\ y \geqq 0$の部分の曲線を$C$とする.$x_0>0,\ y_0>0$とし,曲線$C$上に点P$(x_0,\ y_0)$をとり,点Pにおける曲線$C$の法線を$\ell$とする.このとき,次の問いに答えよ.

(1)直線$\ell$と$x$軸との交点を$(x_1,\ 0)$とするとき,$x_1$を$x_0,\ y_0$を用いて表せ.
(2)$x_0=\cos \theta,\ y_0=\sqrt{3}\sin \theta$と表す.このとき,曲線$C$と直線$\ell$および$x$軸とで囲まれた部分の面積$S(\theta)$を$\theta$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(3)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,(2)で求めた面積$S(\theta)$の最大値を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第5問
関数$f(x)$を
\[ f(x)=e^{ax} \int_0^x |\cos (x-t)| \, dt \]
と定める.ただし,$e$は自然対数の底とし,$a$は実数とする.このとき,次の問いに答えよ.

(1)$0 \leqq x \leqq \pi$を満たす$x$に対して,
\[ I(x)=\int_0^x |\cos (x-t)| \, dt \]
を求めよ.
(2)関数$f(x)$が区間$\displaystyle 0 \leqq x < \frac{\pi}{2}$において極大値をもつような$a$の値の範囲を求めよ.
(3)関数$f(x)$が2つの区間$\displaystyle 0 \leqq x < \frac{\pi}{2}$と$\displaystyle \frac{\pi}{2} \leqq x \leqq \pi$のどちらの区間においても極大値をもつような$a$の値の範囲を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第1問
複数の参加者がグー,チョキ,パーを出して勝敗を決めるジャンケンについて,以下の問いに答えよ.ただし,各参加者は,グー,チョキ,パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする.

(1)$4$人で一度だけジャンケンをするとき,$1$人だけが勝つ確率,$2$人が勝つ確率,$3$人が勝つ確率,引き分けになる確率をそれぞれ求めよ.
(2)$n$人で一度だけジャンケンをするとき,$r$人が勝つ確率を$n$と$r$を用いて表わせ.ただし,$n \geqq 2,\ 1 \leqq r < n$とする.
(3)$\displaystyle \sum_{r=1}^{n-1} {}_n \text{C}_r=2^n-2$が成り立つことを示し,$n$人で一度だけジャンケンをするとき,引き分けになる確率を$n$を用いて表わせ.ただし,$n \geqq 2$とする.
名古屋市立大学 公立 名古屋市立大学 2011年 第4問
$xy$平面上において,媒介変数$t \ (0 \leqq t \leqq 2\pi)$によって$x=2(1+\cos t)\cos t,\ y=2(1+\cos t)\sin t$と表される下図の曲線について次の問いに答えよ.
(図は省略)

(1)$x$の最大値,最小値を求めよ.
(2)$\displaystyle \frac{dx}{dt}$を求めよ.
(3)この曲線で囲まれる図形を$x$軸のまわりに1回転してできる立体の体積を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第5問
2つの関数$f(t)=t \log t$と$g(t)=t^3-9t^2+24t$が与えられているとき,以下の問いに答えよ.

(1)$f(t)$は$t \geqq 1$の範囲で単調に増加することを示せ.
(2)$t \geqq 1$のとき
\[ \left\{
\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}
\right. \]
と媒介変数表示される関数$y=h(x)$の$x \geqq 0$の範囲における増減を調べて,極大値と極小値を求めよ.
(3)$xy$平面上で,曲線$y=h(x)$,2直線$x=f(2),\ x=f(4)$と$x$軸で囲まれた部分の面積を求めよ.
会津大学 公立 会津大学 2011年 第1問
$(1)$,$(2)$の問いに答えよ.また,$(3)$から$(5)$までの空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int x \sin x^2 \, dx=[イ]$
(ii) $\displaystyle \int_0^2 xe^x \, dx=[ロ]$

(2)次の極限を求めよ.
\[ \lim_{n \to \infty} \frac{3^n+4^n}{3^{n+1}+4^{n+1}}=[ハ] \]
(3)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において$3 \sin x+\cos 2x+1=0$のとき,$x=[ニ]$である.
(4)$A=\left( \begin{array}{cc}
1 & -2 \\
-3 & 4
\end{array} \right),\ B=\left( \begin{array}{cc}
1 & 2 \\
3 & 4
\end{array} \right)$のとき,$(A+B)(A-B)=[ホ]$である.
(5)Oを原点とする座標空間に2点A$(1,\ 2,\ 1)$,B$(2,\ 2,\ 0)$をとる.このとき,$\cos \angle \text{AOB}=[ヘ]$,$\triangle$AOBの面積は[ト]である.
滋賀県立大学 公立 滋賀県立大学 2011年 第2問
$x$軸とのなす角が$\displaystyle 2\theta \ \left(0<\theta<\frac{\pi}{4} \right)$で原点Oを通る直線$\ell$と,$x$軸上の定点A$(a,\ 0) \ (a>0)$と$y$軸上の定点B$(0,\ b) \ (b>0)$がある.円$C_1$,円$C_2$は$\ell$と接し,かつ$C_1$は$x$軸とAで接し,$C_2$は$y$軸とBで接するものとする.$C_1$,$C_2$の中心をそれぞれP$_1$,P$_2$とする.ただし,P$_1$,P$_2$は第1象限の点である.

(1)$\triangle$OP$_1$P$_2$の面積は$\displaystyle S=\frac{ab}{\sin 2\theta + \cos 2\theta+1}$であることを示せ.
(2)$\theta$を変数としたとき,$S$の最小値を求めよ.
滋賀県立大学 公立 滋賀県立大学 2011年 第3問
$xy$平面上の原点O,定点A$(a,\ 0) \ (a>0)$,定点B$(0,\ b) \ (b>0)$を頂点とする直角三角形OABがある.直角三角形OAB内の点M$(p,\ q)$から辺OA,OB,ABに引いた垂線と各辺との交点をそれぞれE,F,Gとする.

(1)$L=\text{ME} \cdot \text{MF} \cdot \text{MG}$とおいたとき,$L$を$a,\ b,\ p,\ q$で表せ.
(2)$L$において,$q$を固定し,$p$を変数としたとき,$L$の最大値$L_1$を$a,\ b,\ q$で表せ.
(3)$L_1$において,$q$を変数としたとき,$L_1$の最大値$L_2$を$a,\ b$で表せ.
滋賀県立大学 公立 滋賀県立大学 2011年 第4問
次の問いに答えよ.

(1)$n$を2以上の自然数とするとき,不等式$\displaystyle \int_1^n \log x \, dx< \log 1+\log 2+\cdots +\log n$が成り立つことを示せ.
(2)$a$を正の実数とするとき,上の不等式を用いて$\displaystyle \lim_{n \to \infty}\frac{a^n}{n!}=0$を示せ.
(3)$\displaystyle \lim_{n \to \infty}\frac{\left( 2+\displaystyle\frac{n}{n+1} \right)^n}{n!}$を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第6問
点Q,Rを$xy$平面上の放物線$C:y=x^2$上の相異なる点とする.

(1)$q<p^2$を満たす実数$p,\ q$に対して,点P$(p,\ q)$を考える.Q,Rにおける$C$の2本の接線がともにPを通るとき,$C$とこれらの接線で囲まれた部分の面積を,$p,\ q$を用いて表わせ.
(2)(1)で求めた面積を$S_1$とする.直線QRと$C$で囲まれた部分の面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。