タグ「不等号」の検索結果

405ページ目:全4604問中4041問~4050問を表示)
京都府立大学 公立 京都府立大学 2011年 第2問
$\triangle \mathrm{OAB}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{OP}}=s\overrightarrow{a}+t\overrightarrow{b}$で表される点$\mathrm{P}$を考える.点$\mathrm{C}$は辺$\mathrm{OB}$を$3:1$に外分する点とする.以下の問いに答えよ.

(1)実数$s,\ t$が$\displaystyle 0 \leqq s \leqq \frac{1}{2},\ 0 \leqq t \leqq \frac{1}{2}$の条件を満たしながら動くとき,$\mathrm{P}$の存在範囲を求めよ.
(2)実数$s,\ t$が$3s+2t=3,\ s \geqq 0,\ t \geqq 0$の条件を満たしながら動くとき,$\mathrm{P}$の存在範囲を求めよ.
(3)実数$s,\ t$が$s+2t=2,\ 3s+2t=3,\ s \geqq 0,\ t \geqq 0$の条件を満たすとき,$\displaystyle \frac{|\overrightarrow{\mathrm{CP}}|}{|\overrightarrow{\mathrm{AP}}|}$を求めよ.
(4)$|\overrightarrow{\mathrm{OA}}|=4,\ |\overrightarrow{\mathrm{OB}}|=3,\ \angle \text{AOB}=60^\circ$とする.$\mathrm{P}$が辺$\mathrm{AB}$の垂直二等分線上にあるとき,$s,\ t$の関係式を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第1問
放物線$C:y=x^2$の点A$(a,\ a^2) \ (a>0)$を通り,放物線のこの点における接線に垂直な直線を$\ell$とする.次の問いに答えよ.

(1)直線$\ell$と放物線$C$で囲まれる図形の面積$S$を求めよ.
(2)直線$\ell$と放物線$C$の2つの交点をA,Bとする.点A,Bにおける$C$の接線の交点Pの座標を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第2問
表が出る確率が$p \ (0<p<1)$のコイン3枚を同時に投げたとき,表と裏が出る事象を$A$,少なくとも1つが表である事象を$B$とする.次の問いに答えよ.

(1)事象$A \cap B,\ A \cup B$および$\overline{A} \cap B$の確率を求めよ.
(2)$(A \cap B) \cup (\overline{A \cup B})$は表と裏がどのように出る事象かを答え,その確率を求めよ.
(3)表1枚につき$k$点もらえるとする.得点の期待値が$6p$のとき,$k$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第1問
表が出る確率が$p \ (0<p<1)$のコイン3枚を同時に投げたとき,表と裏が出る事象を$A$,少なくとも1つが表である事象を$B$とする.次の問いに答えよ.

(1)事象$A \cap B,\ A \cup B$および$\overline{A} \cap B$の確率を求めよ.
(2)$(A \cap B) \cup (\overline{A \cup B})$は表と裏がどのように出る事象かを答え,その確率を求めよ.
(3)表1枚につき$k$点もらえるとする.得点の期待値が$6p$のとき,$k$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第2問
放物線$C:y=x^2$の点A$(a,\ a^2) \ (a>0)$における法線を$\ell$とする.次の問いに答えよ.

(1)直線$\ell$と放物線$C$で囲まれる図形の面積$S$を求めよ.
(2)直線$\ell$と放物線$C$の2つの交点をA,Bとする.点A,Bにおける$C$の接線の交点Pの座標を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第3問
平面上の原点を$\mathrm{O}$とし,三角形$\mathrm{OAB}$と実数$p \ (0<p<1)$に対して,点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\cdots$の位置ベクトルを
\begin{eqnarray}
& & \overrightarrow{\mathrm{OP_1}}=\overrightarrow{\mathrm{OA}},\quad \overrightarrow{\mathrm{OP_2}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}},\quad \overrightarrow{\mathrm{OP_3}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+p^2\overrightarrow{\mathrm{BO}}, \nonumber \\
& & \overrightarrow{\mathrm{OP_4}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+p^2\overrightarrow{\mathrm{BO}}+p^3\overrightarrow{\mathrm{OA}}, \nonumber \\
& & \overrightarrow{\mathrm{OP_5}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+p^2\overrightarrow{\mathrm{BO}}+p^3\overrightarrow{\mathrm{OA}}+p^4\overrightarrow{\mathrm{AB}},\ \cdots \nonumber
\end{eqnarray}
によって定義する.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP_{3n}}}$を$n,\ p,\ \overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)$\displaystyle \lim_{n \to \infty}\overrightarrow{\mathrm{OP_{3n}}}=\overrightarrow{\mathrm{OP}}$とする.直線$\mathrm{OP}$と直線$\mathrm{AB}$との交点を$\mathrm{Q}$とするとき,点$\mathrm{Q}$は線分$\mathrm{AB}$をどのような比に分けるか答えよ.
(3)点$\mathrm{P}$は線分$\mathrm{OQ}$をどのような比に分けるか答えよ.
大阪府立大学 公立 大阪府立大学 2011年 第2問
平面上に三角形OABがあり,$\text{OA}=3,\ \text{OB}=2,\ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=-2$であるとする.線分OAを$2:1$の比に内分する点をCとする.また,線分ABを$t:(1-t)$の比に内分する点をPとし,直線OPと直線BCの交点をQとする.ただし,$t$は$0<t<1$を満たす実数である.このとき,次の問いに答えよ.

(1)三角形OABの面積$S$を求めよ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$および$t$を用いて表せ.また,$\overrightarrow{\mathrm{OQ}}=k\overrightarrow{\mathrm{OP}}$となる実数$k$を$t$を用いて表せ.
(3)三角形OCQの面積が$\sqrt{2}$になるときの$t$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第4問
長方形OAB$_1$C$_1$において$\text{OA}=1,\ \angle \text{AOB}_1=\theta \ (0^\circ<\theta<90^\circ)$とする.図のように,この長方形の対角線OB$_1$を一辺とし,$\angle \text{B}_1 \text{OB}_2=\theta$となる長方形OB$_1$B$_2$C$_2$を反時計回りに作る.同様にして$\angle \text{B}_n \text{OB}_{n+1}=\theta$となる長方形OB$_n$B$_{n+1}$C$_{n+1} \ (n=1,\ 2,\ \cdots)$を作る.次の問いに答えよ.

(1)線分OB$_1$およびB$_1$B$_2$の長さを$\theta$で表せ.
(2)長方形OB$_n$B$_{n+1}$C$_{n+1}$の面積を$n$と$\theta$で表せ.ただしB$_0=\text{A}$とする.
(3)$\theta=30^\circ$のとき,図形OAB$_1$B$_2$B$_3$B$_4$C$_4$の面積$S$を求めよ.


\setlength\unitlength{1truecm}
(図は省略)
愛知県立大学 公立 愛知県立大学 2011年 第3問
曲線$C_1:y=p \cos x$,$C_2:y=q \sin x$について,以下の問いに答えよ.ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2},\ p>0,\ q>0$である.

(1)曲線$C_1$と$C_2$の交点の$x$座標を$\alpha$とするとき,$\sin \alpha$と$\cos \alpha$を$p,\ q$で表せ.
(2)曲線$C_1,\ C_2$と$x$軸で囲まれた部分の面積を$S$とするとき,$S$を$p,\ q$で表せ.
(3)$p,\ q$が$p^2+q^2=4$を満たすとき,(2)で求めた面積$S$の最大値を求めよ.
愛知県立大学 公立 愛知県立大学 2011年 第4問
実数を成分に持つ行列$A=\biggl( \begin{array}{cc}
a & b \\
b & a
\end{array} \biggr)$とベクトル$P=\biggl( \begin{array}{c}
x \\
y
\end{array} \biggr),\ Q=\biggl( \begin{array}{c}
z \\
w
\end{array} \biggr)$について,以下の問いに答えよ.ただし,$b \neq 0$とする.

(1)$\displaystyle x=\frac{\sqrt{2}}{2}$のとき,$AP=\alpha P$と$y>0$を満たす$\alpha$と$y$を求めよ.
(2)次の3条件を満たす$\beta,\ z,\ w$を求めよ.
\[ AQ=\beta Q,\quad z^2+w^2=1,\quad z<w \]
(3)(1)と(2)で定められた$\alpha,\ \beta,\ x,\ y,\ z,\ w$を用いて,次式を計算せよ.
\[ \alpha \biggl( \begin{array}{c}
x \\
y
\end{array} \biggr) ( \begin{array}{cc}
x & y
\end{array} ) +\beta \biggl( \begin{array}{c}
z \\
w
\end{array} \biggr) ( \begin{array}{cc}
z & w
\end{array} ) \]
(4)(3)の結果を用いて,$A^n$を求めよ.ただし,$n$は1以上の自然数とする.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。