タグ「不等号」の検索結果

399ページ目:全4604問中3981問~3990問を表示)
大阪薬科大学 私立 大阪薬科大学 2011年 第2問
次の問いに答えなさい.

原点を$\mathrm{O}$とする$xy$座標平面上に,$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(2,\ 0)$がある.$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を通る$2$次関数のグラフを$C$,また,$C$の$\mathrm{O}$における接線を$\ell$とする.

(1)$C$の方程式は,$y=[ ]$である.
(2)$C$と$x$軸で囲まれる図形の面積は$[ ]$である.
(3)$\ell$の方程式は,$y=[ ]$である.
(4)$\ell$と線分$\mathrm{OP}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(5)$C$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる曲線を$C^\prime$とする.$\ell$が$C^\prime$の接線であるとき,$a,\ b$が満たす条件を求めなさい.
京都薬科大学 私立 京都薬科大学 2011年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$\displaystyle \frac{1}{1+\displaystyle\frac{2}{1+\displaystyle\frac{3}{1+\displaystyle\frac{4}{1+\displaystyle\frac{5}{6}}}}}$を簡単にすると,$\displaystyle \frac{[ ]}{[ ]}$となる.

(2)整式$x^{2011}$を$x^2+1$で割った余りは,$[ ]$となる.
(3)対数方程式$\log_{x-1}(x^3-3x^2-x+3)=2$を解くと,$x=[ ]$となる.
(4)$-{90}^\circ<x<0^\circ$において,$\displaystyle \sqrt{\frac{1+\cos x}{1-\cos x}}=8$のとき,$\displaystyle \tan \frac{x}{2}=[ ]$となる.
(5)第$1$項から第$n$項($n=1,\ 2,\ 3,\ \cdots$)までの和が$3n^2-n$である数列の第$100$項目の数は$[ ]$である.
京都薬科大学 私立 京都薬科大学 2011年 第3問
次の$[ ]$にあてはまる数または式を記入せよ.

$t>0$とする.放物線$y=x^2$上の点$\mathrm{P}(t,\ t^2)$における接線$\ell_1$と$x$軸との交点$\mathrm{A}$の$x$座標は$[ ]$である.原点$\mathrm{O}$および$2$点$\mathrm{P}$,$\mathrm{A}$を通る放物線の方程式は$y=[ ]x^2-[ ]x$であり,この放物線の原点における接線$\ell_2$の方程式は$y=-[ ]x$である.$2$直線$\ell_1$,$\ell_2$の交点の座標は$([ ],\ -[ ])$であり,放物線$y=x^2$と$2$直線$\ell_1$,$\ell_2$で囲まれた図形の面積は$[$*$]$である.
点$\mathrm{P}$を通り,$\ell_1$に垂直な直線$\ell_3$の方程式は$y=-[ ]x+[ ]$であり,$\ell_3$と$y$軸および曲線$y=x^2 (x \geqq 0)$で囲まれた図形の面積は$[$**$]$である.そして,$[$**$]:[$*$]=6:1$となるのは,$t=[ ]$のときである.
神戸薬科大学 私立 神戸薬科大学 2011年 第1問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)$(x+1)(y+1)(xy+1)+xy$を因数分解すると$[ ]$である.
(2)$0 \leqq x \leqq \pi$のとき,$2 \sin x=1$を満たす$x$は$x=[ ]$である.
(3)$L=\log_a b \times \log_b c \times \log_c a$の値を計算すると$L=[ ]$である.
(4)$|m^2-30|<20$を満たす整数$m$は全部で$[ ]$個ある.
(5)$4$次方程式$x^4+ax^3+(a+3)x^2+16x+b=0$の解のうち$2$つは$1$と$2$である.このとき,$a=[ ]$,$b=[ ]$であり,残りの解は$[ ]$と$[ ]$である.
神戸薬科大学 私立 神戸薬科大学 2011年 第2問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)$\displaystyle S=\sum_{n=1}^{18} (-1)^n \log_{10}(n+1)(n+2)$の値を計算すると$S=[ ]$である.
(2)$a>0,\ b>0,\ a+b=1$のとき,$\displaystyle \left( 2+\frac{1}{a} \right) \left( 2+\frac{1}{b} \right)$の最小値は$[ ]$である.
(3)$2$次方程式$x^2+ax+a^2-4=0$が正の解と負の解を$1$つずつ持つときの定数$a$の値の範囲は,$[ ]<a<[ ]$である.
(4)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$S_n=2a_n+2n-5$で与えられている.このとき,$a_1=[ ]$である.また,$a_{n+1}$を$a_n$を用いて表すと$a_{n+1}=[ ]$である.
関西学院大学 私立 関西学院大学 2011年 第4問
関数$f(x)=x^{-2} \log x (x>0)$について次の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$f(x)$の極値を求めよ.
(3)曲線$y=f(x)$上の点$(p,\ f(p))$における接線の方程式を求めよ.また,原点を通る接線$\ell$の方程式を求めよ.
(4)$m \neq -1$に対して,不定積分$\displaystyle \int x^m \log x \, dx$を求めよ.また,曲線$y=f(x)$,直線$\ell$,および$x$軸で囲まれる部分の面積$S$を求めよ.
関西学院大学 私立 関西学院大学 2011年 第2問
座標空間において,原点を$\mathrm{O}$とし,点$\mathrm{A}(1,\ 0,\ 0)$をとる.また,$xy$平面上にあり,中心が原点,半径が$1$の円を$C$とするとき,以下の問いに答えよ.

(1)$C$の$y \geqq 0$の部分にある点$\mathrm{P}$について$\angle \mathrm{AOP}=t (0 \leqq t \leqq \pi)$とする.このとき,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{Q}$を$\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}$を満たす点とし,点$\mathrm{B}(\sqrt{3},\ 1,\ 1)$をとる.このとき,内積$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{BQ}}$を求めよ.また,$|\overrightarrow{\mathrm{BP}}|^2=m-n \sin (t+\alpha)$となるような定数$\displaystyle m,\ n,\ \alpha \left( \text{ただし,} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$を求めよ.
(3)$\angle \mathrm{PBQ}=\theta$とおくとき,$\cos \theta$の最大値と最小値,およびそれらのときの$t$の値を求めよ.
(4)$\cos \theta$が上で求めた最小値をとるとき,三角形$\mathrm{PBQ}$の面積を求めよ.
関西学院大学 私立 関西学院大学 2011年 第3問
$xy$平面において,$2$つの放物線$y=x^2$と$y=2x^2-3x+2$の$2$つの共有点のうち$x$座標が小さい方を$\mathrm{A}$,大きい方を$\mathrm{B}$とする.次の問いに答えよ.

(1)点$\mathrm{A}$,点$\mathrm{B}$の座標を求めよ.
(2)$2$つの放物線と直線$x=\sqrt{3}$で囲まれ,$x \leqq \sqrt{3}$の範囲にある部分の面積を求めよ.
(3)放物線$y=x^2$上の点$(p,\ p^2)$における放物線$y=x^2$の接線の方程式と,放物線$y=2x^2-3x+2$上の点$(q,\ 2q^2-3q+2)$における放物線$y=2x^2-3x+2$の接線の方程式を求めよ.
(4)$(3)$において,$2$つの接線が一致し,$p$が点$\mathrm{A}$の$x$座標より小さいとする.$p$の値を求めよ.
津田塾大学 私立 津田塾大学 2011年 第1問
次の問いに答えよ.

(1)中心の$x$座標が$a$で,$2$点$(4,\ 0)$,$(0,\ 2)$を通る円の方程式を求めよ.
(2)$x \geqq 0$,$y \geqq 0$のとき,$(x+y)^3 \leqq 4(x^3+y^3)$が成り立つことを示せ.
津田塾大学 私立 津田塾大学 2011年 第3問
放物線$y=x^2$を$C$とし,直線$y=mx+n$を$\ell$とする.$C$と$\ell$は,異なる$2$点$(\alpha,\ \alpha^2)$,$(\beta,\ \beta^2)$で交わっている.ただし,$\alpha<\beta$とする.

(1)$C$と$\ell$で囲まれた部分の面積を$\alpha,\ \beta$で表せ.
(2)$C$と$\ell$で囲まれた部分の面積が$\displaystyle \frac{9}{2}$であり,かつ$m \geqq 0$,$n \geqq 0$であるような整数の組$(m,\ n)$をすべて求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。