タグ「不等号」の検索結果

395ページ目:全4604問中3941問~3950問を表示)
中部大学 私立 中部大学 2011年 第3問
曲線$y=x^2-2x$と$x$軸に囲まれた部分と,この曲線と直線$x=a$と$x$軸で囲まれた部分の面積が等しくなる定数$a$の値を求めよ.ただし,$a>2$とする.
中部大学 私立 中部大学 2011年 第1問
次の$[ ]$にあてはまる数字または符号を記入せよ.

(1)$\displaystyle -2<\log_8 x<\frac{5}{3}$を満たす$x$は$\displaystyle \frac{[ ]}{[ ]}<x<[ ]$である.
(2)$x^3+ax^2+x+b=0$が$1$と$-2$を解にもつとき,もう$1$つの解は$[ ]$である.
(3)$7$個の数字$1,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4$を$1$列に並べる.このとき,偶数番目がすべて奇数になるような並べ方は$[ ]$通りある.
(4)$2$点$(2,\ 0,\ 1)$,$(1,\ 1,\ 2)$を通る直線がある.原点$\mathrm{O}$からこの直線に下ろした垂線の足を$\mathrm{A}$とする.点$\mathrm{A}$の座標は$\displaystyle \left( \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]} \right)$であり,原点から点$\mathrm{A}$までの距離は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第3問
次の問いに答えよ.

(1)$y=3 \cos x$のグラフ上の$1$点$\displaystyle \left( \frac{\pi}{6},\ \frac{3 \sqrt{3}}{2} \right)$における接線に平行な単位ベクトルを$\overrightarrow{a}=(a_1,\ a_2)$,垂直な単位ベクトルを$\overrightarrow{b}=(b_1,\ b_2)$とすると,$(a_1,\ a_2)=[ ]$,$(b_1,\ b_2)=[ ]$である.
(2)$a_1>0$,$\sqrt{13}(a_1,\ a_2)=(A_1,\ A_2)$とおくとき,行列$A=\left( \begin{array}{cc}
A_1+2 & A_2-2 \\
A_1 & A_2
\end{array} \right)$に対し,連立方程式$A \left( \begin{array}{c}
x \\
y
\end{array} \right)=m \left( \begin{array}{c}
x \\
y
\end{array} \right)$が$(x,\ y)=(0,\ 0)$以外の解をもつとき,定数$m$の値は$[ ]$である.次に行列$A$で表される$1$次変換によって,点$\mathrm{P}(x,\ y)$が点$\mathrm{Q}(X,\ Y)$に移り,ベクトル$\overrightarrow{\mathrm{OP}}$とベクトル$\overrightarrow{\mathrm{OQ}}$が同じ向きになったという.ただし点$\mathrm{O}(0,\ 0)$であり,$x \neq 0$とする.このとき$\overrightarrow{\mathrm{OQ}}=k \overrightarrow{\mathrm{OP}}$となる定数$k$の値は$[ ]$である.さらにこのとき直線$\mathrm{PQ}$の方程式は$y=[ ]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第4問
次の問いに答えよ.

(1)$\displaystyle m(x)=\frac{m_0}{\sqrt{1-\displaystyle\frac{x}{c^2}}}$とする.ただし$m_0,\ c$は正の定数である.また$c^2$より十分小さい正の定数$\varepsilon$に対して$0<x<\varepsilon$とする.

(i) $m^\prime(x)=[ ]$である.
(ii) $m(x)-m_0$を平均値の定理を用いて表すと$[$*$]$である.ただし$*$を書き表わす際,新たに必要となる実数があれば$k$を用い,$k$が満たすべき条件も明記せよ.
(iii) $\varepsilon \to 0$とすると$*$の値は$[ ]$に近づく.

(2)$a,\ b$を正の実数とするとき,積分$\displaystyle \int_0^1 \frac{1}{\{ax+b(1-x)\}^2} \, dx$の値は$[ ]$である.またこの値を$a$について微分すると,$[ ]$となる.
愛知工業大学 私立 愛知工業大学 2011年 第2問
$f(x)=x(1-\log x) (x>0)$とする.ただし,$\log x$は$x$の自然対数である.

(1)$xy$平面において,$y=f(x)$の増減,凹凸を調べ,グラフの概形をかけ.ただし,$\displaystyle \lim_{x \to +0}x \log x=0$である.
(2)$xy$平面において,曲線$y=f(x)$が$x$軸の正の部分と交わる点における曲線の接線を$\ell$とする.直線$\ell$,直線$x=1$および曲線$y=f(x)$で囲まれた部分の面積を求めよ.
北海道薬科大学 私立 北海道薬科大学 2011年 第3問
関数$f(x)=x^3+ax^2+bx+28$($a,\ b$は定数)がある.曲線$y=f(x)$上の点$(2,\ f(2))$における接線の方程式が$y=15x$であるとき,次の設問に答えよ.

(1)$a$の値は$[ア]$,$b$の値は$[イウ]$である.
(2)$f(x)$は
$x=[エオ]$のとき,極大値$[カキ]$
$x=[ク]$のとき,極小値$[ケコ]$
をとる.
(3)$0 \leqq x \leqq 2$の範囲では,$f(x)$の最大値は$[サシ]$,最小値は$[スセ]$である.
北海道科学大学 私立 北海道科学大学 2011年 第5問
$x$の$2$次方程式$2x^2-2kx+k-3=0$が,$x<0$の範囲と$x>1$の範囲にそれぞれ$1$つずつ解を持つように,定数$k$の値を定めると
\[ [ ]<k<[ ] \]
となる.
東北工業大学 私立 東北工業大学 2011年 第1問
$2$次関数$y=ax^2+8x+10-a$について考える(ただし,$a \neq 0$).

(1)この$2$次関数のグラフが,$x$軸とただ一つの共有点を持ち,$a<7$ならば,$a=[ ]$である.またこのとき,$2$次関数のグラフの軸は直線$x=-[ ]$である.
(2)$a=4$のとき,定義域が$-2 \leqq x \leqq 1$の場合の最小値は$[ ]$,最大値は$[ ]$である.
(3)この$2$次関数のグラフの軸が直線$x=4$となるように$a$を定めたとき,頂点の$y$座標は$[ ]$である.
愛知工業大学 私立 愛知工業大学 2011年 第4問
次の$[ ]$を適当に補え.

(1)$2$つの自然数$x,\ y (x<y)$の積が$588$で,最大公約数が$7$であるとき,この$2$つの自然数の組$(x,\ y)$は$(x,\ y)=[ ]$である.
(2)$xy$平面において,$2$次関数$y=f(x)$のグラフが点$(2,\ 5)$を頂点とし,点$(-1,\ -4)$を通る放物線であるとき,$f(x)=[ ]$である.また,このグラフを$x$軸方向に$[ ]$,$y$軸方向に$[ ]$だけ平行移動すれば$y=-x^2+10x-21$のグラフになる.
(3)円に内接する四角形$\mathrm{ABCD}$において,$\angle \mathrm{A}={60}^\circ$,$\mathrm{AB}=4$,$\mathrm{BC}=2$,$\mathrm{DA}=3$のとき,$\mathrm{BD}=[ ]$,$\mathrm{CD}=[ ]$である.
(4)全体集合$U=\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10\}$の部分集合$A=\{1,\ 2,\ 3,\ 4,\ 8,\ 9\}$,$B=\{2,\ 4,\ m\}$($m$は$2,\ 4$以外の$U$の要素)に対して,$A \cap B=\{2,\ 4\}$となるのは$m=[ ]$のときであり,$\overline{A \cup B}=\{6,\ 7,\ 10\}$となるのは$m=[ ]$のときである.ただし,$\overline{A \cup B}$は$U$における$A \cup B$の補集合である.
(5)$\displaystyle \left( x-\frac{1}{2x^2} \right)^{12}$の展開式において,$x^3$の係数は$[ ]$であり,定数項は$[ ]$である.
東北工業大学 私立 東北工業大学 2011年 第3問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{1}{2} \right)^{\frac{1}{3}} \div \left( \frac{1}{2} \right)^{\frac{1}{2}} \times {2}^{\frac{5}{6}}=[ ]$
(2)$(\log_2 27+5 \log_2 3) \cdot \log_3 2=[ ]$
(3)$16<{4}^{x-1}<8 \cdot {2}^x$を満たす$x$の範囲は$[ ]<x<[ ]$である.
(4)$\log_{\frac{1}{3}}(x-2)+3>0$を満たす$x$の範囲は$2<x<[ ]$である.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。