タグ「不等号」の検索結果

392ページ目:全4604問中3911問~3920問を表示)
日本女子大学 私立 日本女子大学 2011年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$で,辺$\mathrm{OA}$を$t:(1-t)$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$の中点を$\mathrm{E}$,辺$\mathrm{DE}$を$1:3$に内分する点を$\mathrm{F}$とする.ただし,$0<t<1$とする.

(1)$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とするとき,内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{a} \cdot \overrightarrow{c}$,$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.
(2)内積$\displaystyle \overrightarrow{a} \cdot \frac{\overrightarrow{b}+\overrightarrow{c}}{2}$,$\displaystyle \frac{\overrightarrow{b}+\overrightarrow{c}}{2} \cdot \frac{\overrightarrow{b}+\overrightarrow{c}}{2}$の値を求めよ.
(3)内積$\overrightarrow{\mathrm{OF}} \cdot \overrightarrow{\mathrm{DE}}$を$t$の式で表せ.
(4)$\overrightarrow{\mathrm{OF}}$と$\overrightarrow{\mathrm{DE}}$が垂直になるように$t$の値を定めよ.
関西大学 私立 関西大学 2011年 第2問
点$(a,\ b) (a>0,\ b>0)$を中心とする円$C$が直線$y=2x$に点$\mathrm{P}$で接するとする.次の問いに答えよ.

(1)接点$\mathrm{P}$の座標を$a,\ b$を用いて表せ.
(2)円$C$がさらに$y=x$にも接するとする.$b$を$a$を用いて表せ.
関西大学 私立 関西大学 2011年 第1問
次の$[ ]$をうめよ.

(1)$\displaystyle \frac{\pi}{12}=\frac{\pi}{3}-\frac{\pi}{4}$より,
\[ \cos \frac{\pi}{12}=\frac{\sqrt{[$①$]}+\sqrt{[$②$]}}{4} \]
である.ただし,$[$①$]$と$[$②$]$は整数であり,$[$①$]<[$②$]$とする.
(2)$0<\theta<\pi$かつ
\[ \cos \theta=\frac{\sqrt{[$①$]}-\sqrt{[$②$]}}{4} \]
であるとき,$\theta=[$③$]$である.
(3)適当な整数$a,\ b$に対し,$\displaystyle \cos \frac{\pi}{12}$は$4$次方程式
\[ ax^4+bx^2+1=0 \]
の解となる.このとき,$a=[$④$]$,$b=[$⑤$]$である.
関西大学 私立 関西大学 2011年 第1問
$a$を正の定数とする.座標平面上に曲線$C_1:y=ax^2$と曲線$C_2:x=y^2$がある.次の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点のうち,原点と異なる点の座標を求めよ.
(2)曲線$C_1$と$C_2$で囲まれた図形を$D$とする.$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V_1$とする.また,$D$を$y$軸のまわりに$1$回転してできる回転体の体積を$V_2$とする.$V_1$と$V_2$をそれぞれ$a$を用いて表せ.
(3)$(2)$で求めた$V_1$と$V_2$について,$V_1 \geqq V_2$となるような$a$の値の範囲を求めよ.また,$V_1-V_2$を最大にする$a$の値を求めよ.
関西大学 私立 関西大学 2011年 第3問
数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$は,漸化式
\[ (n+3)a_{n+1}-(2n+4)a_n+(n+1)a_{n-1}=0 \quad (n \geqq 2) \]
を満たしている.次の問いに答えよ.

(1)$b_n=a_{n+1}-a_n$とおく.$b_n$を$b_{n-1} (n \geqq 2)$で表せ.
(2)$b_n$を$n$と$b_1$を用いて表せ.
(3)$\displaystyle a_1=\frac{1}{3},\ a_2=\frac{1}{2}$であるとき,$a_n$を求めよ.
(4)$(3)$で求めた$a_n$に対して,$\displaystyle \lim_{n \to \infty}(a_n)^n$を求めよ.
関西大学 私立 関西大学 2011年 第3問
$0 \leqq x<2\pi$であるとき,次の不等式を解け.

(1)$\sin x \leqq \cos x$
(2)$|\sin x| \leqq |\cos x|$
(3)$|\sin x| \leqq \cos x$
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)円$x^2+2x+y^2-6y-6=0$の半径は$[ア]$であり,中心の座標は$[イ]$である.

(2)$\displaystyle 2 \log_84+\log_3 \sqrt{15}-\frac{1}{\log_59}$を計算すると$[ウ]$である.

(3)$0 \leqq x<2\pi$とする.方程式$\cos 2x-5 \cos x+3=0$を解くと,$x=[エ],\ [オ]$である.
(4)$0,\ 1,\ 2,\ 3,\ 4$の$5$つの数字から同じ数字を繰り返し使わずに作れる$3$桁の偶数は全部で$[カ]$個ある.
神奈川大学 私立 神奈川大学 2011年 第3問
$x$の$2$次関数$\displaystyle f(x)=x^2-2tx+\frac{t^2}{2}-1$について,以下の問いに答えよ.

(1)$x \leqq 1$のとき,$f(x)$の最小値を$g(t)$とする.$g(t)$を$t$の式で表せ.
(2)$s=g(t)$のグラフを座標平面上にえがけ.
(3)$s=g(t)$のグラフと$t$軸および$s$軸によって囲まれた部分の面積を求めよ.
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)不等式$|4x-3| \leqq -x+7$を解くと$[$(\mathrm{a])$}$である.
(2)$2$つのベクトル$\overrightarrow{a}=(3,\ 4)$,$\overrightarrow{b}=(-1,\ 2)$に対して,$\overrightarrow{a}+k \overrightarrow{b}$と$\overrightarrow{a}-k \overrightarrow{b}$が垂直であるとき,正の定数$k$の値は$[$(\mathrm{b])$}$である.
(3)数列
\[ \frac{1}{\sqrt{1}+\sqrt{3}},\ \frac{1}{\sqrt{3}+\sqrt{5}},\ \frac{1}{\sqrt{5}+\sqrt{7}},\ \cdots,\ \frac{1}{\sqrt{2n-1}+\sqrt{2n+1}},\ \cdots \]
の第$24$項までの和は$[$(\mathrm{c])$}$である.
(4)方程式$\log_2x=2 \log_x2-1$を解くと,$x=[$(\mathrm{d])$}$である.ただし,$x \neq 2$とする.
(5)$1$個のさいころを$2$回投げるとき,$1$回目に出る目の数と$2$回目に出る目の数のうち小さくない方を$X$とする.$X=4$となる確率は$[$(\mathrm{e])$}$である.
(6)関数$f(x)=x^2-x^3$は$x=[$(\mathrm{f])$}$で極大値$[$(\mathrm{g])$}$をとる.
神奈川大学 私立 神奈川大学 2011年 第2問
曲線$\displaystyle C:y=\frac{1}{x} (x>0)$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p} \right)$における接線を$\ell$とする.接線$\ell$と$x$軸との交点を$\mathrm{Q}$とする.さらに,$\mathrm{Q}$を通り$x$軸に垂直な直線と曲線$C$との交点を$\mathrm{R}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸および$y$軸とで囲まれた図形の面積を求めよ.
(3)曲線$C$と接線$\ell$および線分$\mathrm{QR}$とで囲まれた図形の面積を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。