タグ「不等号」の検索結果

390ページ目:全4604問中3891問~3900問を表示)
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)立方体の各面に$1$~$6$の目が$1$つずつ書かれたサイコロを$2$つ振って,出た目の大きくない方を$x$とする.$x=2$である確率は$\displaystyle \frac{[ア]}{[イ]}$である.$x$の期待値は$\displaystyle \frac{[ウ]}{[エ]}$である.
(2)$A=\left( \begin{array}{cc}
5 & 11 \\
3 & 7
\end{array} \right)$とする.行列$A$が表す$1$次変換により,点$(3,\ -2)$は点$([オ],\ [カ])$に移り,点$([キ],\ [ク])$は点$(3,\ 1)$に移る.
(3)$f(x)=x^3-9x^2+18x+9$とし,
\[ A=\{x \;|\; f(x)>0\},\quad B=\{x \;|\; x>-1\} \]
とする.次が成り立つ.
\[ 1 [あ] A,\quad 5 [い] A,\quad A [う] B \]
\begin{screen}
{\bf あ,い,うの選択肢:} \\
$(\mathrm{a}) \in \quad (\mathrm{b}) \not\in \quad (\mathrm{c}) \ni \quad (\mathrm{d}) \not\ni \quad (\mathrm{e}) \subset \quad (\mathrm{f}) \supset \quad (\mathrm{g}) =$
\end{screen}
また,正の整数$a$に対して,
\[ C=\{x \;|\; 0 \leqq x \leqq a\} \]
とする.$A \supset C$となる最も大きい整数$a$は$a=[ケ]$である.
立教大学 私立 立教大学 2011年 第3問
放物線$y=x^2$上の点$(a,\ a^2)$を$\mathrm{A}$とし,点$\mathrm{A}$における放物線の接線を$\ell$とする.ただし,$a>0$とする.また,$x$軸上の点$(a,\ 0)$の直線$\ell$について対称な点を$\mathrm{B}$とし,点$\mathrm{A}$,$\mathrm{B}$を通る直線を$m$とする.このとき,次の問$(1)$~$(4)$に答えよ.

(1)直線$\ell$と$x$軸の正の向きとのなす角を$\theta$とし,また,直線$m$と$x$軸の正の向きとのなす角を$\gamma$とする.$\gamma$を$\theta$と$\pi$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$,$\displaystyle -\frac{\pi}{2}<\gamma<\frac{\pi}{2}$とする.
(2)直線$m$の傾き$\tan \gamma$を$\tan \theta$で表せ.
(3)直線$m$の方程式を$a$を用いて表せ.
(4)直線$m$が,$a$の値によらず,必ず通過する点の座標を求めよ.
立教大学 私立 立教大学 2011年 第1問
次の空欄アに$①$~$④$のいずれかを記入せよ.また空欄イ~スに当てはまる数または式を記入せよ.

(1)実数$x,\ y$に対して,$x^2+y^2 \leqq 1$は「$-1 \leqq x \leqq 1$かつ$-1 \leqq y \leqq 1$」であるための何条件かを,$①$「必要条件」,$②$「十分条件」,$③$「必要十分条件」,$④$「必要条件でも十分条件でもない」のうちから選択すると,$[ア]$となる.
(2)$3x^2-xy-2y^2-x+6y+k$が,$x,\ y$の整数係数の$1$次式の積に因数分解されるとき,$k=[イ]$である.
(3)$3$つの数$\log_2 x$,$\log_2 10$,$\log_2 20$がこの順で等差数列であるとき,$x=[ウ]$である.
(4)$\displaystyle \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots +\frac{1}{100 \cdot 101}=\frac{[エ]}{[オ]}$である.
(5)座標平面上の曲線$y=x^3+ax^2+bx$上の点$(2,\ 4)$における接線が$x$軸に平行であるとき,$a=[カ]$,$b=[キ]$である.
(6)自宅から$2000 \; \mathrm{m}$離れている駅まで,はじめに毎分$80 \; \mathrm{m}$で歩き,途中から毎分$170 \; \mathrm{m}$で走るものとする.出発してから$16$分以内に駅に到着するには,歩きはじめてから$[ク]$分以内に走り出さなければならない.
(7)点$\mathrm{A}(2,\ 3)$,点$\mathrm{B}(p,\ q)$と原点$\mathrm{O}$がつくる三角形$\mathrm{OAB}$について,$\angle \mathrm{OAB}=90^\circ$のとき,$p,\ q$の満たす条件は$p \neq 2$かつ$p=[ケ]$である.
(8)実数$x,\ y,\ a,\ b$が条件$x^2+y^2=2$,および$a^2+b^2=3$を満たすとき,$ax+by$の最大値は$[コ]$で,最小値は$[サ]$である.
(9)$\displaystyle x=\frac{\sqrt{6}-\sqrt{10}i}{3}$とし,$x$と共役な複素数を$y$とするとき,$x^3+y^3=[シ]$となる.ただし,$i$は虚数単位とする.
\mon $\displaystyle \sin x+\sin y=\frac{1}{3}$,$\displaystyle \cos x-\cos y=\frac{1}{2}$のとき,$\cos (x+y)$の値は$[ス]$である.
上智大学 私立 上智大学 2011年 第3問
座標平面において,動点$\mathrm{P}$の座標$(x,\ y)$が時刻$t$の関数として
\[ x=t^{\frac{1}{4}} (1-t)^{\frac{3}{4}},\quad y=t^{\frac{3}{4}} (1-t)^{\frac{1}{4}} \quad (0 \leqq t \leqq 1) \]
で与えられている.

(1)動点$\mathrm{P}$の$x$座標が最大になるのは$\displaystyle t=\frac{[ナ]}{[ニ]}$のときであり,$y$座標が最大になるのは$\displaystyle t=\frac{[ヌ]}{[ネ]}$のときである.
(2)$0<t<1$のとき,動点$\mathrm{P}$の速さの最小値は$\displaystyle \frac{\sqrt{[ノ]}}{[ハ]}$である.
(3)動点$\mathrm{P}$が直線$y=x$上に来るのは$t=0$のとき,$\displaystyle t=\frac{[ヒ]}{[フ]}$のとき,$t=1$のときの$3$回である.
(4)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,動点$\mathrm{P}$の描く曲線を$L$とする.$L$で囲まれる図形の面積は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
上智大学 私立 上智大学 2011年 第4問
実数$x$に対し,$x$を超えない最大の整数を$[x]$で表す.

自然数$n=1,\ 2,\ 3,\ \cdots$に対して,$n$が$[\sqrt{n}]$の整数倍で表せるとき,そのような$n$を小さいものから順に並べて
\[ n_1,\ n_2,\ n_3,\ \cdots \]
とする.

(1)$n_5=[マ]$である.
(2)自然数$p$に対して,$[\sqrt{n}]=p$をみたす自然数$n$の集合を$M_p$とする.$M_p$の要素で$p$の整数倍であるものは全部で$[ミ]$個ある.
(3)自然数$m$に対して,
\[ S_m=\sum_{i=1}^m n_i \]
とおく.$k \geqq 1$のとき,$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$はいずれも$k$の多項式で,それぞれの$k$の$1$次の項の係数は$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$の順に$[ム]$,$[メ]$,$[モ]$である.また,$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$は共通の因数$\displaystyle \left( k+[ヤ] \right)$をもつ.

(4)$\displaystyle \lim_{m \to \infty} \frac{\sqrt[3]{S_m}}{m}=\frac{[ユ]}{[ヨ]}$である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$x>1$とする.
\[ \sqrt{\log_2 x}>\log_2 \sqrt{x} \]
を満たす$x$の値の範囲は$[ア]<x<[イ]$である.
(2)$x$の関数
\[ y=\sqrt{2} (\sin x-\cos x)-\sin x \cos x+1 \quad \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \]
を考える.

(i) $t=\sin x-\cos x$とおくと,
\[ y=\frac{[ウ]}{[エ]}t^2+\sqrt{[オ]}t+\frac{[カ]}{[キ]} \]
が成り立つ.
(ii) $\displaystyle x=\frac{[ク]}{[ケ]} \pi$で$y$は最大値$[コ]+\sqrt{[サ]}$をとり,$\displaystyle x=\frac{[シ]}{[ス]} \pi$で$y$は最小値$\displaystyle \frac{[セ]}{[ソ]}$をとる.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~スに当てはまる数を記入せよ.

(1)点$\mathrm{P}(1,\ 2)$と点$\mathrm{Q}(0,\ -1)$を通り,点$\mathrm{Q}$での接線の傾きが$2$である円の方程式は$(x-[ア])^2+(y-[イ])^2=[ウ]$である.
(2)$\overrightarrow{a}=(-2,\ 2,\ 1)$,$\overrightarrow{b}=(-5,\ 4,\ 3)$のとき,$\overrightarrow{a}$と$2 \overrightarrow{a}-\overrightarrow{b}$のなす角度は$[エ]$である.
(3)$\sin x+\sqrt{3} \cos x-2=0 (0<x<\pi)$を解くと,$x=[オ]$である.
(4)数列$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{1}{5},\ \cdots$に関して,$\displaystyle \frac{17}{30}$はこの数列の第$[カ]$項である.

(5)$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$に対して,$\omega^8$は$[キ]+[ク]i$となる.ただし$i$は虚数単位とし,キ,クは実数とする.
(6)$2$次方程式$x^2+ax+16=0$が整数解を持つような整数$a$のうち最大のものは$[ケ]$である.
(7)サイコロを$4$回振る.連続して偶数があらわれず,かつ連続して奇数もあらわれない確率は$[コ]$である.
(8)$x$が実数を動くとき,関数$f(x)=4^x+4^{-x}-5(2^x+2^{-x})+9$の最小値は,$[サ]$である.
(9)関数$f(x)$が等式$\displaystyle \int_a^x f(t) \, dt=x^2+(3a+8)x+4$をみたすとき,定数$a$の値は$[シ]$である.
\mon $6^{30}$は$[ス]$桁の整数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
日本女子大学 私立 日本女子大学 2011年 第1問
$a$を$1$より大きい定数とする.関数
\[ f(x)=(\log_2x)^2-\log_2x^4+1 \quad (1 \leqq x \leqq a) \]
の最小値を求めよ.
日本女子大学 私立 日本女子大学 2011年 第3問
$1 \leqq x \leqq 3$のとき,関数$\displaystyle f(x)=\int_{x-1}^{x+1} |12-3t^2| \, dt$の最小値を求めよ.また,そのときの$x$の値を求めよ.
日本女子大学 私立 日本女子大学 2011年 第3問
平面上の$3$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos 2\theta,\ \sin 2\theta)$,$\mathrm{C}(\cos 8\theta,\ \sin 8\theta)$を考える.

(1)$\sin \theta=t$とおくとき$\sin 3\theta$を$t$の式で表せ.
(2)線分の長さの和$\mathrm{AB}+\mathrm{BC}$を$t$の式で表せ.
(3)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{3}$とするとき$\mathrm{AB}+\mathrm{BC}$の最大値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。