タグ「不等号」の検索結果

389ページ目:全4604問中3881問~3890問を表示)
明治大学 私立 明治大学 2011年 第3問
以下の$[か]$から$[こ]$にあてはまるものを答えよ.

$a,\ b$を定数とするとき,$3$次の整式$f(x)=x^3+ax^2+bx-4$は,$x-2$で割ると$-2$余り,$2x-1$で割ると$\displaystyle -\frac{7}{8}$余るという.

(1)$a=[か]$,$b=[き]$である.
(2)方程式$f(x)=0$の解をすべて求めると,$[く]$である.
(3)方程式$f(x)=c$が異なる$3$つの実数解を持つような実数$c$の値の範囲は,$[け]$である.
(4)関数$f(x)$の区間$d \leqq x \leqq d+3$における最大値が$0$であるような実数$d$の値の範囲は,$[こ]$である.
明治大学 私立 明治大学 2011年 第4問
$2$つの関数
\[ f(x)=2e^{-x} |\sin x|,\quad g(x)=\sqrt{2}e^{-x} \]
を考える.方程式$f(x)-g(x)=0 (x \geqq 0)$の解を小さいものから順に$x_1,\ x_2,\ x_3,\ \cdots$とする.

(1)次の$[さ]$から$[す]$にあてはまるものを記入せよ.

(i) $x_k=[さ] (k=1,\ 2,\ 3,\ \cdots)$である.
(ii) $a,\ b$を定数とする.
\[ \frac{d}{dx} \{e^{-x}(a \sin x+b \cos x)\}=2e^{-x} \sin x \]
が成り立つのは,$a=[し]$,$b=[す]$のときである.

(2)$\displaystyle S_n=\int_{x_{2n-1}}^{x_{2n}} (f(x)-g(x)) \, dx (n=1,\ 2,\ 3,\ \cdots)$とおく.以下の解答は途中経過も書くこと.

(i) $S_1$を求めよ.
(ii) $S_n (n=2,\ 3,\ 4,\ \cdots)$を求めよ.
(iii) $\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$(ⅰ)$~$(ⅲ)$のそれぞれの場合について,$3$つの実数$A,\ B,\ C$の大小関係を,下の選択肢から選べ.

(i) $A=\sin 1^\circ$,$B=\tan 1^\circ$,$C=1-\cos 2^\circ$
(ii) $A=\comb{150}{80}$,$B=\comb{150}{81}$,$C=\comb{151}{81}$

(iii) $\displaystyle A=\frac{10}{\pi}$,$B=\sqrt{10}$,$\displaystyle C=\frac{1}{\tan 15^\circ}$


選択肢: \quad $(\mathrm{a}) A>B>C \qquad (\mathrm{b}) A>C>B \qquad (\mathrm{c}) B>A>C$
\qquad\qquad \;\;\; $(\mathrm{d}) B>C>A \qquad (\mathrm{e}) C>A>B \qquad (\mathrm{f}) C>B>A$

(2)$\tan \alpha=-\sqrt{7} (0^\circ<\alpha<180^\circ)$のとき
\[ \cos \alpha=\frac{[ア] \sqrt{[イ]}}{[ウ]} \]
である.
(3)$a,\ b$は自然数で,$\displaystyle \frac{a^2}{b}$の整数部分は$6$桁であり,$\displaystyle \frac{b^2}{a}$は小数第$3$位にはじめて$0$でない数字が現われる$1$より小さい数である.このとき,$a$は$[エ]$桁または$[オ]$桁,$b$は$[カ]$桁である.ただし$[エ]<[オ]$である.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~ソに当てはまる数または式を記入せよ.

(1)$x$が$0<x<1$と$\displaystyle x^2+\frac{1}{x^2}=3$を満たすとき,$x^3$の値は$[ア]$である.
(2)不等式$\displaystyle \log_5 \left( \frac{x+1}{2} \right)+\log_5(x-4)<2$の解は$[イ]<x<[ウ]$である.
(3)$\sqrt{3} \sin \theta-\cos \theta>1 (-\pi<\theta<\pi)$を満たす$\theta$の範囲は,$[エ]<\theta<[オ]$である.
(4)$3$次方程式$x^3+3x^2-24x-a=0$が,異なる$3$つの実数解をもつような定数$a$の値の範囲は,$[カ]<a<[キ]$である.
(5)積分$\displaystyle \int_{-3}^3 |x^2-1| \, dx$の値は$[ク]$である.
(6)$2$次不等式$ax^2-4x+b<0$の解が$-3<x<5$であるとき,定数$a$は$[ケ]$であり,定数$b$は$[コ]$である.
(7)$2$つのベクトル$\overrightarrow{a}=(2,\ -1,\ 1)$と$\overrightarrow{b}=(x-2,\ -x,\ 4)$のなす角が$30^\circ$のとき,$x$の値は$[サ]$である.
(8)点$(x,\ y)$が直線$2x+3y=4$の上を動くとする.$4^x+8^y$が最小値をとるとき,$x,\ y$の値は$x=[シ]$,$y=[ス]$である.
(9)三角形$\mathrm{ABC}$の$\mathrm{A}$における角度は$45^\circ$,$\mathrm{C}$における角度は$75^\circ$,辺$\mathrm{AC}$の長さが$6$であるとき,辺$\mathrm{BC}$の長さは$[セ]$である.
\mon $0,\ 1,\ 2,\ 3$の数字から選んで$4$桁の自然数を作るとき,同じ数字を何回用いてもよいとすると,$2$の倍数でない自然数は$[ソ]$個できる.
西南学院大学 私立 西南学院大学 2011年 第3問
$0 \leqq \theta<\pi$のとき,$\theta$の不等式を解け.

(1)$|\sin \theta|-|\cos \theta|>0$の解は$\displaystyle \frac{[セ]}{[ソ]}\pi<\theta<\frac{[タ]}{[チ]}\pi$である.

(2)$\cos 3\theta+\cos \theta<0$の解は$\displaystyle \frac{[ツ]}{[テ]}\pi<\theta<\frac{[ト]}{[ナ]}\pi,\ \frac{[ニ]}{[ヌ]}\pi<\theta<\pi$である.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~セに当てはまる数を記入せよ.

(1)$(x+1)^5$の$x^3$の係数は$[ア]$である.
(2)中心を$\mathrm{O}$とする円の円周上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\mathrm{AB}=3$とするとき,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AO}}$の内積は,$[イ]$である.
(3)$y=x^2+px+q (pq \neq 0)$のグラフが点$(1,\ 1)$を通り,$x$軸に接するとき,$p=[ウ]$,$q=[エ]$である.
(4)$120$人の学生の通学手段について調査したところ,電車を利用する学生が$83$人,バスを利用する学生が$48$人,電車もバスも利用しない学生が$28$人であった.電車とバスの両方を利用する学生は$[オ]$人である.
(5)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の$6$枚のカードをよくきって,$6$枚を$1$列に並べるとき,$\mathrm{A}$と$\mathrm{B}$が隣り合う確率は$[カ]$である.
(6)$2$次方程式$x^2-4x-2=0$の解を$\alpha,\ \beta$とする.$\displaystyle \frac{\alpha^2}{\beta}$と$\displaystyle \frac{\beta^2}{\alpha}$を解とする$2$次方程式を$x^2+px+q=0$とするとき,$p=[キ]$,$q=[ク]$である.
(7)方程式$\log_2 \sqrt[3]{x}-\log_4 4x^3+8=0$の解は$x=[ケ]$である.
(8)$x+x^{-1}=7$のとき,$x^{\frac{1}{4}}+x^{-\frac{1}{4}}$は$[コ]$である.ただし,$x>0$とする.
(9)$100$以下の自然数の中で,$4$で割ると$1$余る数の総和は$[サ]$である.
\mon $f^\prime(x)$を$f(x)$の導関数とする.$f^\prime(x)=3x^2-4x-1$,$f(1)=0$を満たすとき,$f(x)$を$f(x)=x^3+px^2+qx+r$とおくと,$p=[シ]$,$q=[ス]$,$r=[セ]$である.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~サに当てはまる数または式を記入せよ.

(1)$2$つの異なる$2$次方程式$x^2+3px+4=0$,$x^2+3x+4p=0$が共通の実数解を持つとき,$p$の値は$[ア]$である.ただし,$p \neq 1$とする.
(2)三角形$\mathrm{ABC}$において,$\mathrm{BC}=6$,$\mathrm{CA}=4$,$\displaystyle \cos C=\frac{1}{3}$であるとき,$\sin A$の値は$[イ]$である.
(3)不等式$|2x|+|x-4|<6$を解くと,$[ウ]$となる.
(4)実数$x,\ y$が$(3+2i)x+(1-i)y+13+2i=0$を満たすとき,$x=[エ]$,$y=[オ]$である.ただし,$i$は虚数単位とする.
(5)点$\mathrm{Q}$が円$x^2+y^2=4$上を動くとき,点$\mathrm{P}(3,\ 0)$と点$\mathrm{Q}$の中点の軌跡の方程式は$[カ]$である.
(6)$\displaystyle \cos \theta=\frac{1}{5}$のとき,$\tan \theta=[キ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(7)$a=\log_{10}2$,$b=\log_{10}3$とするとき,$\displaystyle \log_{100}\frac{125}{9}$を$a,\ b$を用いて表すと,$[ク]$となる.
(8)等式$\displaystyle f(x)=x^2+4x-\int_0^1 f(t) \, dt$を満たす関数$f(x)$は,$[ケ]$である.
(9)数列$2,\ 4,\ 9,\ 17,\ 28,\ 42,\ \cdots$の第$n$項を$n$を用いて表すと,$[コ]$となる.
\mon 座標空間上に$3$つの点,$\mathrm{A}(1,\ 3,\ -1)$,$\mathrm{B}(-1,\ 2,\ 2)$,$\mathrm{C}(2,\ 0,\ 1)$をとるとき,三角形$\mathrm{ABC}$の重心の座標は$[サ]$である.
立教大学 私立 立教大学 2011年 第2問
袋に赤玉が$1$個,白玉が$2$個の合計$3$個の玉が入っている.袋から玉$1$個を取り出し,玉の色を確認し,また袋に戻す,という作業を$2$回行い,これを$1$回の試行と考える.この試行を使って,$\mathrm{A}$君と$\mathrm{B}$君の$2$人が以下のようなゲームをすることにした.
\begin{itemize}
取り出した玉の色の$1$番目が白,$2$番目が赤であれば,$\mathrm{A}$君が勝ち抜けとなり,
取り出した玉の色の$1$番目が赤,$2$番目が白であれば,$\mathrm{B}$君が勝ち抜けとなり,
取り出した玉の色が$2$回とも同じ色であれば,引き分けとし,試行を続ける.
\end{itemize}
また,どちらか$1$人が勝ち抜けた後も,同様に玉を$2$回出し入れする試行を続け,以下の場合にゲームを終了させることにした.
\begin{itemize}
残った$1$人が$\mathrm{A}$君のとき,取り出した玉の色の$1$番目が白,$2$番目が赤である場合.
残った$1$人が$\mathrm{B}$君のとき,取り出した玉の色の$1$番目が赤,$2$番目が白である場合.
\end{itemize}
このとき,次の問に答えよ.

(1)$1$回目の試行で,$\mathrm{A}$君が勝ち抜ける確率,$\mathrm{B}$君が勝ち抜ける確率,引き分けになる確率をそれぞれ求めよ.
(2)$3$回目の試行でゲームが終了する確率を求めよ.
(3)$\mathrm{A}$君のほうが早く勝ち抜けし,その後,$n$回目の試行で$\mathrm{B}$君がゲームを終了させる確率を$n$を用いて表せ.ただし,$n \geqq 2$とし,$n$には$\mathrm{A}$君が勝ち抜けるまでの試行の回数も含むものとする.
上智大学 私立 上智大学 2011年 第2問
$a$を実数とし,$2$つの放物線
\[ C:y=-x^2+4,\quad C_a:y=(x-a)^2+a \]
を考える.

(1)$C$と$C_a$が異なる$2$点で交わるための条件は,
\[ -a^2+[サ]a+[シ]>0 \]
であり,したがって
\[ [ス]<a<[セ] \]
である.このとき
\[ b=\sqrt{-a^2+[サ]a+[シ]} \]
とおくと,$(a,\ b)$は中心が$([ソ],\ [タ])$で,半径が$[チ]$の円周上にある.
(2)$[ス]<a<[セ]$のとき,$C$と$C_a$との交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とすると,
\setstretch{2}
\[ \begin{array}{rcl}
\alpha+\beta &=& [ツ]a+[テ] \\
2\alpha\beta &=& [ト]a^2+[ナ]a+[ニ] \\
\beta-\alpha &=& [ヌ]b+[ネ]
\end{array} \]
\setstretch{1.3}
である.
(3)$C$と$C_a$により囲まれた図形の面積は,$a=[ノ]$のときに最大値$[ハ]$をとる.
上智大学 私立 上智大学 2011年 第2問
座標平面上に曲線$C:y=-x^2$および,$C$上の$2$点$\mathrm{A}(a,\ -a^2)$,$\mathrm{B}(b,\ -b^2)$(ただし$a<b$)を考える.$\mathrm{A}$における$C$の接線を$\ell$,$\mathrm{B}$における$C$の接線を$m$とする.$2$直線$\ell$,$m$の交点を$\mathrm{P}(x,\ y)$とする.

(1)$\mathrm{P}(x,\ y)$の各座標を$a,\ b$で表すと,
\[ x=\frac{[ク]}{[ケ]}a+\frac{[コ]}{[サ]}b,\quad y=[シ]ab \]
である.
(2)$\ell$と$m$が直交するように$\mathrm{A}$,$\mathrm{B}$が$C$上を動くとき,$\mathrm{P}(x,\ y)$は常に
\[ [ス]x+[セ]y-1=0 \]
を満たす.
(3)$\angle \mathrm{APB}=135^\circ$であるように$\mathrm{A}$,$\mathrm{B}$が$C$上を動くとき,$\mathrm{P}(x,\ y)$は常に
\[ [ソ]x^2+[タ] \left( y+\frac{[チ]}{[ツ]} \right)^2+1=0 \]
を満たし,$x=0$のとき$\mathrm{P}(0,\ y)$の$y$座標は
\[ \frac{[テ]}{[ト]}+\frac{[ナ]}{[ニ]} \sqrt{[ヌ]} \]
である.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。