タグ「不等号」の検索結果

367ページ目:全4604問中3661問~3670問を表示)
電気通信大学 国立 電気通信大学 2011年 第2問
$x>0$において関数
\[ f(x)=\sin (\log x) \]
を考える.\\
方程式$f(x)=0$の$0<x \leqq 1$における解を大きいほうから順にならべて,
\[ 1=\alpha_1>\alpha_2>\alpha_3>\cdots > \alpha_n>\alpha_{n+1} > \cdots \]
とする.以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数とする.なお,不定積分の計算においては積分定数を省略してもよい.

(1)不定積分$I(x),\ J(x)$をそれぞれ
\[ I(x)=\int e^x \sin x \, dx,\quad J(x)=\int e^x \cos x \, dx \]
とおくとき,$I(x)+J(x),\ I(x)-J(x)$を求めよ.
(2)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)$\alpha_n \ (n=1,\ 2,\ 3,\ \cdots)$を求めよ.
(4)区間$\alpha_{n+1} \leqq x \leqq \alpha_n$において,曲線$y=f(x)$と$x$軸とで囲まれる部分の面積を$S_n \ (n=1,\ 2,\ 3,\ \cdots)$とする.$S_n$を求めよ.
(5)無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和$S$を求めよ.
福島大学 国立 福島大学 2011年 第1問
以下の問いに答えなさい.

(1)次の不等式を解きなさい.
\[ -2(\log_2x)^2+9\log_82x<1 \]
(2)放物線$y=-x^2$に,点$\mathrm{A}(0,\ a)$から引いた$2$本の接線のなす角が$\displaystyle \frac{\pi}{2}$になるときの$a$の値を求めなさい.
(3)$\displaystyle \int_0^\pi x^2 \sin 2x \, dx$を求めなさい.
電気通信大学 国立 電気通信大学 2011年 第3問
初項が$a$で公比が$r$の等比数列を$\{a_n\}$とし,初項が$b$で公比が$s$の等比数列を$\{b_n\}$とする.数列$\{x_n\}$を
\[ x_n=a_n+b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定義するとき,以下の問いに答えよ.

(1)$x_1x_3-x_2^2$と$x_2x_4-x_3^2$をそれぞれ$a,\ b,\ r,\ s$の式で表し,因数分解せよ.
(2)$x_1x_4-x_2x_3$を$a,\ b,\ r,\ s$の式で表し,因数分解せよ.

以下では,$r<s$とし,数列$\{x_n\}$のはじめの$4$つの項が
\[ x_1=4, x_2=7, x_3=11, x_4=13 \]
となる場合を考える.

\mon[(3)] $a,\ b,\ r,\ s$の値を求め,数列$\{x_n\}$の一般項を求めよ.
\mon[(4)] 数列$\{x_n\}$の初項から第$n$項までの和$S_n$を求めよ.
\mon[(5)] 極限値$\displaystyle \lim_{n \to \infty}\frac{x_n}{S_n}$を求めよ.
電気通信大学 国立 電気通信大学 2011年 第4問
直線$\ell:y=2x$の法線ベクトルを$\overrightarrow{n}=(a,\ b)$とし,点P$(x,\ y)$と直線$\ell$との距離を$h$とする.ただし,$|\overrightarrow{n}|=1$で,$a>0$とする.以下の問いに答えよ.

(1)$\overrightarrow{n}$の成分$a,\ b$を求めよ.
(2)原点をOとし,$\overrightarrow{\mathrm{0}}$でない$\overrightarrow{\mathrm{OP}}$に対し,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{n}$のなす角を$\theta$とする.このとき,$h$を$|\overrightarrow{\mathrm{OP}}|$と$\theta$を用いて表せ.また,$h$を$x,\ y$を用いて表せ.

以下では,曲線$C$を,点A$(1,\ 0)$と直線$\ell$からの距離が等しい点P$(x,\ y)$の軌跡とする.

\mon[(3)] 曲線$C$の方程式($x,\ y$の関係式)を求めよ.
\mon[(4)] 曲線$C$と直線$y=t \ (t \text{は定数})$との共有点の個数を求めよ.
\mon[(5)] 曲線$C$と直線$y=t$が2個の共有点Q,Rをもつとき,線分QRの長さを$t$を用いて表せ.
\mon[(6)] 曲線$C$と直線$y=0$とで囲まれる部分の面積$S$を求めよ.
福島大学 国立 福島大学 2011年 第3問
以下の問いに答えなさい.

(1)2つの容器 A,Bがある.はじめAの容器には100gの純水が,Bの容器には濃度$s\,\%$の食塩水100gが入っている.Aの3分の1を捨て,捨てた量と同じ重さ(g)のBの食塩水をAの容器に移したのち,Aをよく混ぜる操作を考える.この操作を$k$回行った後のAの食塩水に含まれる食塩の重さ(g)を$w_k$とする$(k=1,\ 2,\ 3)$.$w_1,\ w_2,\ w_3$を$s$を用いて表しなさい.
(2)上記(1)の操作の後,A,Bの溶液を捨て,改めてAの容器には100gの純水を,Bの容器には濃度$s\,\%$の食塩水100gを入れる.自然数$n$について,Aの$n$分の1を捨て,捨てた量と同じ重さ(g)のBの食塩水をAの容器に移したのちAをよく混ぜる操作を考える.この操作を$k$回行った後のAの濃度を$a_k\ (\%)$とする$(1 \leqq k \leqq n)$.$1 \leqq k \leqq n-1$のとき,$a_{k+1}$と$a_k$との関係を$s$と$n$を用いて表しなさい.さらに$a_n$を求めなさい.
帯広畜産大学 国立 帯広畜産大学 2011年 第1問
自然数$n$について,$\{a_n\}$は初項$a$,公差$d$の等差数列であり,$\{b_n\}$は初項$b$,公比$r$の等比数列である.数列$\{a_n\}$の一般項を$a_n$で表し,その初項から第$n$項までの和を$S_a$とする.また,数列$\{b_n\}$の一般項を$b_n$で表し,その初項から第$n$項までの和を$S_b$とする.次の各問に解答しなさい.

(1)$d=2a,\ a \neq 0$とする.

(i) $d$と$n$を用いて$a_n$を表しなさい.また,$a$と$n$を用いて$S_a$を表しなさい.
(ii) 不等式$6a_n<a_{n+1}+27d$および$2a_n>a_{n+1}$を満たすすべての$n$の値を求めなさい.

(2)$r=2b+1,\ b \neq 0$とする.

(i) $b$と$n$を用いて$b_n$を表しなさい.また,$r$と$n$を用いて$S_b$を表しなさい.
(ii) $\displaystyle \log_2 b_n > \log_2 b_{n+1}+\frac{1}{2}$であるとき,$r$の値の範囲を求めなさい.

(3)$A$と$B$はいずれも$2 \times 2$行列であり,それぞれ$A=\left( \begin{array}{cc}
d & 2d-1 \\
1 & d
\end{array} \right),\ B=A^2$と定義される.また,行列$B$の$(1,\ 1)$成分を$g$とし,行列$A$が与えられたときの$a$と$b$の関係は次の連立1次方程式を満たすものとする.
\[ A \left( \begin{array}{c}
a \\
b
\end{array} \right)=\left( \begin{array}{c}
-9 \\
1
\end{array} \right) \]

(i) $d$を用いて$g$を表しなさい.また,$g$が最小値をとるときの$d$の値を求めなさい.
(ii) $g$が最小値をとるとき,$A$の逆行列$A^{-1}$を求め,さらに$a$と$b$の値を求めなさい.また,$r \neq 1,\ r>0,\ n=3$および$S_a=2S_b$であるとき,$S_a$と$r$の値を求めなさい.
宇都宮大学 国立 宇都宮大学 2011年 第5問
座標平面上の直線$y=mx \ (m>0)$を$\ell$とする.点$(1,\ 0)$を$\mathrm{P}_1$とし,$\mathrm{P}_1$から$\ell$に下ろした垂線の足を$\mathrm{Q}_1$,$\mathrm{Q}_1$から$x$軸に下ろした垂線の足を$\mathrm{P}_2$とする.以下同様に$\mathrm{P}_n \ (n=1,\ 2,\ \cdots)$から$\ell$に下ろした垂線の足を$\mathrm{Q}_n$,$\mathrm{Q}_n$から$x$軸に下ろした垂線の足を$\mathrm{P}_{n+1}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2$の面積$S_1$を$m$を用いて表せ.
(2)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1} \ (n=1,\ 2,\ \cdots)$の面積を$S_n$とするとき,級数$\displaystyle \sum_{n=1}^\infty S_n$の和$S$を$m$を用いて表せ.
(3)(2)における$S$が最大になる$m$と,そのときの$S$の値を求めよ.
群馬大学 国立 群馬大学 2011年 第5問
次の問いに答えよ.

(1)$1365$と$1560$の最大公約数を求めよ.
(2)$2$以上の整数$x,\ y,\ z$の組で$xyz=1365,\ 3x \leqq 2y \leqq z$を満たすものをすべて求めよ.
群馬大学 国立 群馬大学 2011年 第5問
次の問いに答えよ.

(1)$1365$と$1560$の最大公約数を求めよ.
(2)$2$以上の整数$x,\ y,\ z$の組で$xyz=1365,\ 3x \leqq 2y \leqq z$を満たすものをすべて求めよ.
群馬大学 国立 群馬大学 2011年 第2問
平面上で原点Oを通り$x$軸の正の向きと$\theta$の角をなす直線を$\ell$とする.$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かすとき,点A$(2,\ 0)$から$\ell$へ下ろした垂線をAG,点B$(0,\ 1)$から$\ell$へ下ろした垂線をBHとし,折れ線の長さ$\text{AG}+\text{GH}+\text{HB}$を$L$とする.ただし,$\theta = 0$のときはGはAに等しく,$\displaystyle \theta=\frac{\pi}{2}$のときはHはBに等しいものとする.直線$\ell$の傾きは0以上とする.

(1)$\text{GH} = 0$となるときの$\theta$の値を$\alpha$とするとき,$\tan \alpha$の値を求めよ.
(2)$L$の最小値と,そのときの$\tan \theta$の値を求めよ.
(3)$L$の最大値と,そのときの$\tan \theta$の値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。