タグ「不等号」の検索結果

366ページ目:全4604問中3651問~3660問を表示)
防衛医科大学校 国立 防衛医科大学校 2011年 第3問
$xyz$空間の3点A$(5,\ 0,\ 0)$,B$(4,\ 1,\ 0)$,C$(5,\ 0,\ \sqrt{2})$が定める平面を$T$,$T$上にあって点Aを中心として半径$\sqrt{2}$をもつ円を$U$とする.このとき,以下の問に答えよ.

(1)点Pは円$U$の周上にある.$\angle \text{PAB}=\theta \ (0 \leqq \theta <2\pi)$とするとき,Pの座標$(u,\ v,\ r)$を$\theta$を用いて表せ.
(2)2点D$(10,\ 0,\ 0)$,Pを通る直線が$yz$平面と交わる点をQ$(0,\ Y,\ Z)$とする.$Y$と$Z$を$\theta$を用いて表せ.
(3)(2)の$Y,\ Z$から$\theta$を消去して,Qの軌跡が楕円になることを示せ.また,その楕円の概形を$yz$平面上に図示せよ.
福岡教育大学 国立 福岡教育大学 2011年 第1問
次の問いに答えよ.

(1)$N$は自然数で$N^{10}$が$16$桁であるとする.このとき,$N^8$は何桁になるか求めよ.
(2)$\alpha$が無理数であり,$a,\ b$が有理数であるとき,
\[ a+b \alpha=0 \quad \text{ならば} \quad a=b=0 \]
であることを証明せよ.
(3)$a,\ b,\ c,\ x,\ y,\ z$を実数とする.

(i) $(a^2+b^2+c^2)(x^2+y^2+z^2) \geqq (ax+by+cz)^2$が成り立つことを示せ.
(ii) $x+y+z=1$のとき,$x^2+y^2+z^2$の最小値を求めよ.
岐阜大学 国立 岐阜大学 2011年 第2問
連立不等式$y \geqq |3x-2|,\ x-4y+8 \geqq 0$の表す領域を$D$とする.以下の問に答えよ.

(1)領域$D$を図示せよ.
(2)点$(x,\ y)$が領域$D$を動くとき,$x^2+2x+y^2$の最小値と,それを与える点$(x,\ y)$を求めよ.
岐阜大学 国立 岐阜大学 2011年 第1問
下の図のように,$xy$平面上に,$x$軸に平行な道,$y$軸に平行な道,直線$y=-x$に平行な道があるものとする.これらの道を通って,原点Oから点A$(4,\ 4)$まで行くとき,以下の各場合に道順の総数を求めよ.
\setlength\unitlength{1truecm}

(図は省略)



(1)最短経路で行く場合.
(2)点B$(2,\ 2.5)$を通らずに,最短経路で行く場合.
(3)点C$(-1,\ 2)$を通り,道のりが$8+\sqrt{2}$になる場合.
(4)道のりが$8+\sqrt{2}$になる場合.
(5)$0 \leqq x \leqq 4,\ 0 \leqq y \leqq 4$の部分だけを通り,道のりが$8+\sqrt{2}$になる場合.
岐阜大学 国立 岐阜大学 2011年 第3問
平面上に点Oを中心とする半径1の円$S$と$S$に内接する正三角形ABCがある.以下の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)平面上の任意の点Pに対して,以下の不等式が成り立つことを示せ.
\[ \text{AP}^2+\text{BP}^2+\text{CP}^2 \geqq 3 \]
また,等号が成り立つのはどのようなときか答えよ.
(4)円$S$の周上の任意の点Qに対して,
\[ (\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OQ}})^2=\frac{3}{2} \]
となることを示せ.
(5)円$S$の周上の任意の点Qに対して,
\[ \text{AQ}^4+\text{BQ}^4+\text{CQ}^4 \]
の値を求めよ.
岐阜大学 国立 岐阜大学 2011年 第4問
$k,\ n$は自然数で$n \geqq 3$とする.平面上の点$\mathrm{O}$を中心とする \\
半径1の円を$S_1$とする.右の図のように,半径$r_1$の$n$個の \\
円は隣り合う他の2つの円と外接し,かつ$S_1$に内接してい \\
る.さらに,点$\mathrm{O}$を中心とする円$S_2$は,半径$r_1$のすべて \\
の円に外接している.同様に,$k \geqq 2$に対して,半径$r_k$の \\
$n$個の円は隣り合う他の2つの円と外接し,かつ円$S_k$に内 \\
接している.さらに点$\mathrm{O}$を中心とする円$S_{k+1}$は,半径$r_k$ \\
のすべての円に外接している.$S_2$の半径を$s_2$とする.以下の問に答えよ.
\img{385_2485_2011_1}{60}


(1)$r_1$と$s_2$を$n$を用いて表せ.
(2)半径$r_k$の1つの円の面積を$T_k(n)$とする.$T_k(n)$を$k$と$n$を用いて表せ.
(3)$\displaystyle U(n)=n \sum_{k=1}^\infty T_k(n)$とする.$U(n)$を求めよ.
(4)$\displaystyle \lim_{n \to \infty}U(n)$を求めよ.
岐阜大学 国立 岐阜大学 2011年 第1問
下の図のように,$xy$平面上に,$x$軸に平行な道,$y$軸に平行な道,直線$y=-x$に平行な道があるものとする.これらの道を通って,原点Oから点A$(4,\ 4)$まで行くとき,以下の各場合に道順の総数を求めよ.
\setlength\unitlength{1truecm}

(図は省略)



(1)最短経路で行く場合.
(2)点B$(2,\ 2.5)$を通らずに,最短経路で行く場合.
(3)点C$(-1,\ 2)$を通り,道のりが$8+\sqrt{2}$になる場合.
(4)道のりが$8+\sqrt{2}$になる場合.
(5)$0 \leqq x \leqq 4,\ 0 \leqq y \leqq 4$の部分だけを通り,道のりが$8+\sqrt{2}$になる場合.
岐阜大学 国立 岐阜大学 2011年 第2問
連立不等式$y \geqq |3x-2|,\ x-4y+8 \geqq 0$の表す領域を$D$とする.以下の問に答えよ.

(1)領域$D$を図示せよ.
(2)点$(x,\ y)$が領域$D$を動くとき,$x^2+2x+y^2$の最小値と,それを与える点$(x,\ y)$を求めよ.
岐阜大学 国立 岐阜大学 2011年 第3問
平面上に点Oを中心とする半径1の円$S$と$S$に内接する正三角形ABCがある.以下の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)平面上の任意の点Pに対して,以下の不等式が成り立つことを示せ.
\[ \text{AP}^2+\text{BP}^2+\text{CP}^2 \geqq 3 \]
また,等号が成り立つのはどのようなときか答えよ.
(4)円$S$の周上の任意の点Qに対して,
\[ (\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OQ}})^2=\frac{3}{2} \]
となることを示せ.
(5)円$S$の周上の任意の点Qに対して,
\[ \text{AQ}^4+\text{BQ}^4+\text{CQ}^4 \]
の値を求めよ.
電気通信大学 国立 電気通信大学 2011年 第1問
$xy$平面上の曲線$C:y=\log x$に対して,以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数とする.

(1)曲線$C$上の点$\mathrm{P}(t,\ \log t)$における$C$の接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸の交点$\mathrm{Q}$の$x$座標を$x_0$とする.$x_0$を$t$を用いて表せ.
(3)$t>1$のとき,曲線$C$と$x$軸および直線$x=t$とで囲まれる部分の面積を$S(t)$とする.$S(t)$を$t$を用いて表せ.
(4)$t>1$のとき,曲線$C$と$x$軸および接線$\ell$とで囲まれる部分の面積を$T(t)$とする.$T(t)$を$t$を用いて表せ.
(5)$1<t \leqq e^3$の範囲において,$f(t)=T(t)-S(t)$とおく.このとき,関数$f(t)$の増減を調べ,$f(t)$の最大値および最小値を求めよ.ただし,$2<e<3$であることは既知としてよい.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。