タグ「不等号」の検索結果

365ページ目:全4604問中3641問~3650問を表示)
大分大学 国立 大分大学 2011年 第4問
直線$\ell_1:y=mx+3 \ (m>0)$が,点A$(5,\ 3)$を中心とする円$C_1$に接している.その接点をPとする.直線$\ell_1$と$y$軸との交点をQ,2点A,Pを通る直線$\ell_2$と$x$軸との交点をRとする.

(1)円$C_1$の半径$r$を$m$を用いて表しなさい.
(2)円$C_1$が$x$軸と異なる2点で交わるような$m$の値の範囲を求めなさい.
(3)線分QRの中点Sの座標を求めなさい.
(4)3点P,Q,Rを通る円$C_2$の中心と円$C_1$の中心との距離を$d$とする.$d$の最小値とそのときの$m$の値を求めなさい.
佐賀大学 国立 佐賀大学 2011年 第3問
次の問いに答えよ.

(1)正方形$\mathrm{ABCD}$が図のように3つの線分$\mathrm{EG}$,$\mathrm{FH}$,$\mathrm{CG}$に \\
よって4つの部分に分割されている.四角形$\mathrm{AEGH}$は面積 \\
が400の正方形になり,三角形$\mathrm{FCG}$は面積が8になる. \\
このとき,正方形$\mathrm{ABCD}$の面積を求めよ.
\img{711_2922_2011_1}{30}

(2)「2116の正の平方根を求めよ」という問題に対して \\
以下のような答案があった.この答案の意図を解説せよ. \\
(答案) \quad まず$40^2<2116<50^2$なので,$2116-40^2=516$を出す.次に516を2で割って258が出る.この258を40で割ると商が6で余りが18になる.さらに余りの18に2をかければ$36=6^2$となり商の2乗が出る. \\
最後に$40^2$と$6^2$とから$40+6=46$が得られる.以上により,求める答えは46になる.
佐賀大学 国立 佐賀大学 2011年 第4問
$c$を実数とし,$a_1=c,\ a_2=c^2-2$および
\[ a_{n+2}=a_1a_{n+1}-a_n \quad (n \geqq 1) \]
で数列$\{a_n\}$を定義する.

(1)$n \geqq 1$のとき$a_{n+4}=a_2a_{n+2}-a_n$となることを示せ.
(2)$c=\sqrt{2}$のとき$a_{100}$を求めよ.
九州工業大学 国立 九州工業大学 2011年 第1問
$a,\ b$を正の実数とし,関数$f(x),\ g(x)$をそれぞれ$f(x)=3x-2a \sin x \cos x,\ g(x)=x^2+b \cos^2 x -b$とする.以下の問いに答えよ.

(1)$a=3$のとき,$0 \leqq x \leqq \pi$における$f(x)$の増減を調べ,極値を求めよ.
(2)$a=1$のとき,$x \geqq 0$において$f(x) \geqq 0$が成り立つことを示せ.
(3)$x \geqq 0$において$f(x) \geqq 0$が成り立つような$a$の範囲を求めよ.
(4)$x \geqq 0$において$g(x) \geqq 0$が成り立つような$b$の範囲を求めよ.
九州工業大学 国立 九州工業大学 2011年 第2問
実数$a$と行列$A=\biggl( \begin{array}{cc}
a-2 & -2a \\
4a & -2a+2
\end{array} \biggr)$がある.$A$が表す座標平面上の点の移動に関する以下の二つの条件を考える.

条件1: 原点O以外のある点Pが$A$によってP自身に移される.
条件2: 原点O以外のある点Qが$A$によって線分OQ上のQ以外の点に移される.

以下の問いに答えよ.

(i) 条件1がみたされるとき,$a$の値を求めよ.
(ii) 条件1,条件2の両方がみたされるとき,$a$の値を求めよ.
(iii) $a$は$(ⅱ)$で求めた値とする.自然数$n$に対して,点R$_n$を次のように定める.
\begin{itemize}
R$_1$の座標を$(4,\ 5)$とする.
$A$によってR$_{n-1}$が移される先をR$_n \ (n \geqq 2)$とする.
\end{itemize}
R$_n$の座標を$(x_n,\ y_n)$とするとき,$\displaystyle x_n=\frac{12}{2^n}-2,\ y_n=\frac{16}{2^n}-3$であることを数学的帰納法を用いて証明せよ.
九州工業大学 国立 九州工業大学 2011年 第3問
正の実数$a$と関数$f(x)=|x^2-a^2| \ (-2a \leqq x \leqq 2a)$がある.$y=f(x)$のグラフを$y$軸のまわりに回転させてできる形の容器に$\pi a^2 (\text{cm}^3 / \text{秒})$の割合で水を静かに注ぐ.水を注ぎ始めてから容器がいっぱいになるまでの時間を$T$(秒)とする.ただし,長さの単位はcmとする.次の問いに答えよ.

(1)$y=f(x)$のグラフの概形を描け.
(2)水面の高さが$a^2$(cm)になったとき,容器中の水の体積を$V$(cm$^3$)とする.$V$を$a$を用いて表せ.
(3)$T$を$a$を用いて表せ.
(4)水を注ぎ始めてから$t$秒後の水面の高さを$h\;$(cm)とする.$h$を$a$と$t$を用いて表せ.ただし,$0<t<T$とする.
(5)水を注ぎ始めてから$t$秒後の水面の上昇速度を$v\;$(cm/秒)とする.$v$を$a$と$t$を用いて表せ.ただし,$0<t<T$とする.
九州工業大学 国立 九州工業大学 2011年 第4問
図のような番号のついたマス目と駒とサイコロを使って,以下に示す規則にしたがうゲームを考える.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline
\end{tabular}

\begin{itemize}
駒は最初0番のマス目に置く.
サイコロを投げ,出た目の数だけ駒を10番のマス目に向かって進める.
駒がちょうど10番のマス目に止まればゴールとする.
ただし,10番のマス目を超える場合は,その分だけ10番のマス目から0番のマス目側に戻る.
\end{itemize}
たとえば,7番のマス目に駒があり,出た目が5であった場合は,駒は8番のマス目に移動し,その次に出た目が2であった場合はゴールする.以下の問いに答えよ.

(1)2投目でゴールする確率を求めよ.
(2)2投目の後,9番のマス目に駒がある確率を求めよ.
(3)3投目でゴールする確率を求めよ.
(4)このゲームを使ってA,Bの2名が対戦する.Aから始めて,交互にサイコロを投げて各自の駒を進める試行を行ない,先にゴールした方を勝ちとする.ただし,どちらも2投以内でゴールしない場合は引き分けとする.引き分ける確率を求めよ.
(5)A,Bの駒をそれぞれ0番,$k$番$(0<k<10)$のマス目に置いて(4)と同様の対戦を開始するとき,Aが勝つ確率よりBが勝つ確率の方が高くなるための$k$の条件を求めよ.
愛知教育大学 国立 愛知教育大学 2011年 第6問
$\theta$を$0 \leqq \theta \leqq \pi$をみたす実数とする.単位円上の点Pを,動径OPと$x$軸の正の部分とのなす角が$\theta$である点とし,点Qを$x$軸の正の部分の点で,点Pからの距離が2であるものとする.また,$\theta=0$のときの点Qの位置をAとする.

(1)線分OQの長さを$\theta$を使って表せ.
(2)線分QAの長さを$L$とするとき,極限値$\displaystyle \lim_{\theta \to 0}\frac{L}{\theta^2}$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2011年 第1問
以下の問に答えよ.

(1)$a,\ b,\ c$は正の整数で,$a<b<c,\ a+b<c$を満たすものとする.このとき整式$ax^2-(a^2+ab)x+a^2b-174$が$x-c$で割り切れるような$(a,\ b,\ c)$の組があればすべて求めよ.
(2)$\alpha=1+\sqrt{3}i,\ \beta=1-\sqrt{3}i$のとき
\[ \left( \frac{\beta^2-4\beta+8}{\alpha^{n+2}-\alpha^{n+1}+2\alpha^n+4\alpha^{n-1}+\alpha^3-2\alpha^2+5\alpha-2} \right)^3 \]
はいくらか.ただし,$n$は2以上の自然数,$i$は虚数単位とする.
(3)$y=\cos x \ (0 \leqq x \leqq \pi)$の逆関数を$y=f(x)$とおく.$\displaystyle x=\frac{\sqrt{3}}{2}$における,$f(x)$の第2次導関数の値$\displaystyle f^{\prime\prime} \biggl( \frac{\sqrt{3}}{2} \biggr)$はいくらか.
防衛医科大学校 国立 防衛医科大学校 2011年 第2問
$0$,$1$,$2$,$3$,$4$,$5$の$6$つの数字を重複せずに用いて,$n$桁の整数を作る($n \leqq 6$).このとき,以下の問に答えよ.

(1)$n=3$,すなわち$3$桁の整数で,隣り合う数字の和がどれも$5$にならないような整数はいくつできるか.
(2)$n=4$,すなわち$4$桁の整数で,隣り合う数字の和がどれも$3$にならないような整数はいくつできるか.
(3)$n=4$,すなわち$4$桁の整数で,隣り合う数字の和が$5$になる箇所が$2$つあるような整数をすべて加えるといくらになるか.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。