タグ「不等号」の検索結果

356ページ目:全4604問中3551問~3560問を表示)
金沢大学 国立 金沢大学 2011年 第3問
座標平面上に$\mathrm{A}(p,\ q)$,$\mathrm{B}(-q,\ p)$,$\mathrm{C}(-p,\ -q)$,$\mathrm{D}(q,\ -p)$を頂点とする正方形がある.ただし,$p>0,\ q>0,\ p^2+q^2=1$とする.また,直線$\mathrm{AB}$,$\mathrm{AD}$が直線$x+y=1$と交わる点をそれぞれ$\mathrm{E}(r,\ s)$,$\mathrm{F}(t,\ u)$とする.次の問いに答えよ.

(1)直線$\mathrm{AB}$,$\mathrm{AD}$の方程式を$p,\ q$を用いて表せ.
(2)$r,\ s,\ t,\ u$を$p,\ q$を用いて表せ.
(3)$k= p+ q$とおくとき,$pq$を$k$の式で表せ.また,$k \leqq \sqrt{2}$を示せ.
(4)$st- ru$を$k$の式で表せ.また,$st -ru$の最小値を求めよ.
(図は省略)
東京工業大学 国立 東京工業大学 2011年 第3問
定数$k$は$k > 1$をみたすとする.$xy$平面上の点A$(1,\ 0)$を通り$x$軸に垂直な直線の第1象限に含まれる部分を,2点X,Yが$\text{AY} = k \text{AX}$をみたしながら動いている.原点O$(0,\ 0)$を中心とする半径1の円と線分OX,OYが交わる点をそれぞれP,Qとするとき,$\triangle$OPQの面積の最大値を$k$を用いて表せ.
名古屋大学 国立 名古屋大学 2011年 第3問
$xy$平面上に3点O$(0,\ 0)$,A$(1,\ 0)$,B$(0,\ 1)$がある.

(1)$a>0$とする.$\text{OP}:\text{AP}=1:a$を満たす点Pの軌跡を求めよ.
(2)$a>0,\ b>0$とする.$\text{OP}:\text{AP}:\text{BP}=1:a:b$を満たす点Pが存在するための$a,\ b$に対する条件を求め,$ab$平面上に図示せよ.
岩手大学 国立 岩手大学 2011年 第4問
2つの関数を$f(x)=\sqrt{x+1} \ (x \geqq -1),\ g(x)=x^2-1 \ (x \geqq 0)$とし,$y=f(x)$と$y=g(x)$で表される曲線をそれぞれ$C_1,\ C_2$とする.このとき,次の問いに答えよ.

(1)$f(x)$の逆関数が$g(x)$であることを示せ.
(2)曲線$C_1$と曲線$C_2$の交点Pの座標を求めよ.
(3)2つの曲線$C_1,\ C_2$,および2直線$x=0,\ x=1$で囲まれた図形の面積が,(2)で求めた交点Pを通る直線により二等分されるとき,この直線の傾きを求めよ.
千葉大学 国立 千葉大学 2011年 第5問
$a$は正の実数とし,座標平面上の直線$\ell: y = x$と放物線$C : y = ax^2$を考える.$C$上の点$\displaystyle (x,\ y) \ \bigl( \text{ただし} 0 < x < \frac{1}{a} \bigr)$で$\ell$との距離を最大にする点を$\mathrm{P}(s,\ t)$とおく.また$\mathrm{P}$と$\ell$の距離を $d$とおく.以下の問いに答えよ.

(1)$d,\ s,\ t$をそれぞれ$a$の式で表せ.また点$\mathrm{P}$での放物線$C$の接線の傾きを求めよ.
(2)実数$a$を$a > 0$の範囲で動かしたとき,点$\mathrm{P}(s,\ t)$の軌跡を求め,図示せよ.
千葉大学 国立 千葉大学 2011年 第7問
$n$人($n \geqq 3$)でじゃんけんを$1$回行うとき,次の問いに答えよ.ただし,「あいこ」とは$1$種類または$3$種類の手が出る場合であり,勝つ人数が$0$の場合である.

(1)$1$人だけが勝つ確率を求めよ.
(2)あいこになる確率を求めよ.
(3)勝つ人数の期待値を求めよ.
千葉大学 国立 千葉大学 2011年 第8問
$n$段の階段を上るのに,一歩で1段,2段,または3段を上ることができるとする.この階段の上り方の総数を$a_n$とおく.たとえば,$a_1 = 1,\ a_2 = 2,\ a_3 = 4$である.

(1)$a_4,\ a_5$の値を求めよ.
(2)$a_n,\ a_{n+1},\ a_{n+2},\ a_{n+3} \ (n \geqq 1)$の間に成り立つ関係式を求めよ.
(3)$a_{10}$の値を求めよ.
千葉大学 国立 千葉大学 2011年 第9問
$r$は$0<r<1$を満たす実数とする.座標平面上に1辺の長さが$r^n$の正方形$R_n \ (n=0,\ 1,\ 2,\ 3,\ \cdots)$があり,その頂点を反時計回りに$\mathrm{A}_n$,$\mathrm{B}_n$,$\mathrm{C}_n$,$\mathrm{D}_n$とする.さらに$R_n$は次の条件$(ⅰ),\ (ⅱ)$を満たすとする.

(i) 正方形$R_0$の頂点は$\mathrm{A}_0(0,\ 0)$,$\mathrm{B}_0(1,\ 0)$,$\mathrm{C}_0(1,\ 1)$,$\mathrm{D}_0(0,\ 1)$である.
(ii) $\mathrm{A}_{n+1}=\mathrm{C}_n$で,点$\mathrm{D}_{n+1}$は辺$\mathrm{C}_n \mathrm{D}_n$上にある.

このとき以下の問いに答えよ.

(1)点$\mathrm{A}_2,\ \mathrm{A}_3,\ \mathrm{A}_4$の座標を$r$を用いて表せ.
(2)$\mathrm{A}_{4n}$の座標を$(x_n,\ y_n) \ (n=0,\ 1,\ 2,\ 3,\ \cdots)$とおく.$x_{n+1}-x_n$および$y_{n+1}-y_n$を$r,\ n$の式で表せ.
(3)$\displaystyle \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n$を$r$を用いて表せ.
筑波大学 国立 筑波大学 2011年 第1問
Oを原点とする$xy$平面において,直線$y = 1$の$| \, x \, | \geqq 1$を満たす部分を$C$とする.

(1)$C$上に点A$(t,\ 1)$をとるとき,線分OAの垂直二等分線の方程式を求めよ.
(2)点Aが$C$全体を動くとき,線分OAの垂直二等分線が通過する範囲を求め,それを図示せよ.
筑波大学 国立 筑波大学 2011年 第2問
自然数$n$に対し,関数
\[ F_n(x) = \int_x^{2x} e^{-t^n} \, dt \quad (x \geqq 0) \]
を考える.

(1)関数$F_n(x) \ (x \geqq 0)$はただ一つの点で最大値をとることを示し,$F_n(x)$が最大となるような$x$の値$a_n$を求めよ.
(2)(1)で求めた$a_n$に対し,極限値$\displaystyle \lim_{n \to \infty} \log a_n$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。