タグ「不等号」の検索結果

352ページ目:全4604問中3511問~3520問を表示)
埼玉大学 国立 埼玉大学 2011年 第2問
曲線$C:(x-2)^2+y^2=1$と直線$\ell: y=(\tan \theta)x$を考える.ただし$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$とする.$f(\theta)$を次の(ア),(イ),(ウ)のように定める.

\mon[(ア)] $C$と$\ell$の共有点の個数が1のとき,$f(\theta)$は共有点と原点の距離とする.
\mon[(イ)] $C$と$\ell$の共有点の個数が2以上のとき,$f(\theta)$は共有点と原点の距離のうち最も小さいものとする.
\mon[(ウ)] $C$と$\ell$が共有点を持たないとき,$f(\theta)=0$とする.

さらに,$C$と$\ell$が共有点を持つ$\theta$の最大値を$\alpha$とする.次の問いに答えよ.

(1)$\alpha$を求めよ.
(2)$C$と$\ell$が共有点を持つとき,$f(\theta)$を求めよ.
(3)次の積分を計算せよ.
\[ \int_0^\alpha \{f(\theta)\}^2 \, d\theta \]
神戸大学 国立 神戸大学 2011年 第3問
$n$を$2$以上の自然数として,
\[ S_n= \sum_{k=n}^{n^3-1}\frac{1}{k\log k} \]
とおく.以下の問に答えよ.

(1)$\displaystyle \int_n^{n^3} \frac{dx}{x\log x}$を求めよ.
(2)$k$を$2$以上の自然数とするとき,
\[ \frac{1}{(k+1)\log (k+1)} < \int_k^{k+1} \frac{dx}{x \log x} < \frac{1}{k\log k} \]
を示せ.
(3)$\displaystyle \lim_{n \to \infty} S_n$の値を求めよ.
神戸大学 国立 神戸大学 2011年 第5問
以下の問に答えよ.

(1)$x \geqq 1$において,$x > 2\log x$が成り立つことを示せ.ただし,$e$を自然対数の底とするとき,$2.7<e<2.8$であることを用いてよい.
(2)自然数$n$に対して,
\[ (2n \log n)^n < e^{2n\log n} \]
が成り立つことを示せ.
東北大学 国立 東北大学 2011年 第1問
以下の問いに答えよ.

(1)実数$x$に関する連立不等式
\[ \left\{
\begin{array}{l}
x \geqq -1 \\
2 \cdot 3^x + a\; 3^{-x} \leqq 1
\end{array}
\right. \]
が解をもつような実数 aの範囲を求めよ.
(2)$x \geqq -1$を満たすすべての実数$x$に対し不等式
\[ 3^x + a\; 3^{-x} \geqq a \]
が成り立つような実数$a$の範囲を求めよ.
東北大学 国立 東北大学 2011年 第2問
三角形OABの辺ABを$1:2$に内分する点をCとする.動点Dは$\overrightarrow{\mathrm{OD}} = x \overrightarrow{\mathrm{OA}} \ (x \geqq 1)$を満たすとし,直線CDと直線OBの交点をEとする.

(1)実数$y$を$\overrightarrow{\mathrm{OE}} = y \overrightarrow{\mathrm{OB}}$で定めるとき,次の等式が成り立つことを示せ.
\[ \frac{2}{x} + \frac{1}{y} = 3 \]
(2)三角形OABの面積を$S$,三角形ODEの面積を$T$とするとき,$\displaystyle \frac{S}{T}$の最大値と,そのときの$x$を求めよ.
東北大学 国立 東北大学 2011年 第4問
平面上に長さ3の線分OAを考え,ベクトル$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{a}$で表す.$0 < t < 1$を満たす実数$t$に対して,$\overrightarrow{\mathrm{OP}} = t \overrightarrow{a}$となるように点Pを定める.大きさ 2のベクトル$\overrightarrow{b}$を$\overrightarrow{a}$と角$\theta \ (0 < \theta < \pi)$をなすようにとり,点Bを$\overrightarrow{\mathrm{OB}} =\overrightarrow{b}$で定める.線分OBの中点をQとし,線分AQと線分BPの交点をRとする.\\
\quad このとき,どのように$\theta$をとっても$\overrightarrow{\mathrm{OR}}$と$\overrightarrow{\mathrm{AB}}$が垂直にならないような$t$の値の範囲を求めよ.
静岡大学 国立 静岡大学 2011年 第3問
実数$t$が$\displaystyle 0 \leqq t \leqq \frac{2}{3}$の範囲を変化するとき,2つの曲線
\[ C : y = -2x^2+3x,\quad C_t: y = |x^2-3tx| \]
で囲まれる図形の面積を$S(t)$とおく.次の問いに答えよ.

(1)2曲線$C,\ C_t$の交点の$x$座標をすべて求めよ.
(2)$S(t)$を$t$の式で表せ.
(3)$S(t)$を最大にする$t$の値を求めよ.
東京大学 国立 東京大学 2011年 第3問
$L$を正定数とする.座標平面の$x$軸上の正の部分にある点P$(t,\ 0)$に対し,原点Oを中心とし点Pを通る円周上を,Pから出発して反時計回りに道のり$L$だけ進んだ点をQ$(u(t),\ v(t))$と表す.

(1)$u(t),\ v(t)$を求めよ.
(2)$0<a<1$の範囲の実数$a$に対し,積分
\[ f(a) = \int_a^1 \sqrt{\{u^{\, \prime}(t)\}^2 + \{v^{\, \prime}(t)\}^2 } \, dt \]
を求めよ.
(3)極限$\displaystyle \lim_{a \to +0}\frac{f(a)}{\log a}$を求めよ.
東京大学 国立 東京大学 2011年 第5問
$p,\ q$を2つの正の整数とする.整数$a,\ b,\ c$で条件
\[ -q \leqq b \leqq 0 \leqq a \leqq p,\quad b \leqq c \leqq a \]
を満たすものを考え,このような$a,\ b,\ c$を$[a,\ b\ ;\ c]$の形に並べたものを$(p,\ q)$パターンと呼ぶ.各$(p,\ q)$パターン$[a,\ b\ ;\ c]$に対して
\[ w([a,\ b\ ;\ c]) = p-q-(a+b) \]
とおく.

(1)$(p,\ q)$パターンのうち,$w([a,\ b\ ;\ c])=-q$となるものの個数を求めよ.また,$w([a,\ b\ ;\ c])=p$となる$(p,\ q)$パターンの個数を求めよ.\\
以下$p=q$の場合を考える.
(2)$s$を整数とする.$(p,\ p)$パターンで$w([a,\ b\ ;\ c])=-p+s$となるものの個数を求めよ.
(3)$(p,\ p)$パターンの総数を求めよ.
東京大学 国立 東京大学 2011年 第6問
次の問いに答えよ.

(1)$x,\ y$を実数とし,$x>0$とする.$t$を変数とする2次関数$f(t)=xt^2+yt$の$0 \leqq t \leqq 1$における最大値と最小値の差を求めよ.
(2)次の条件を満たす点$(x,\ y)$の全体からなる座標平面内の領域を$S$とする.\\
$x>0$かつ,実数$z$で$0 \leqq t \leqq 1$の範囲の全ての実数$t$に対して
\[ 0 \leqq xt^2+yt +z \leqq 1 \]
を満たすようなものが存在する.\\
$S$の概形を図示せよ.
(3)次の条件を満たす点$(x,\ y,\ z)$全体からなる座標空間内の領域を$V$とする.\\
$0 \leqq x \leqq 1$かつ,$0 \leqq t \leqq 1$の範囲の全ての実数$t$に対して,
\[ 0 \leqq xt^2+yt + z \leqq 1 \]
が成り立つ.\\
$V$の体積を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。