タグ「不等号」の検索結果

321ページ目:全4604問中3201問~3210問を表示)
東京理科大学 私立 東京理科大学 2012年 第2問
$\mathrm{O}$を原点とする座標平面において,点$(1,\ 1)$を点$(5,\ 5)$に,点$(1,\ -7)$を点$(-3,\ 21)$に移す$1$次変換を$f$とする.$f$による点$\mathrm{P}$の像を点$\mathrm{Q}$とするとき,$\mathrm{P}$に対して内積の条件
\[ \overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{PQ}}=0 (*) \]
を考える.

(1)$f$を表す行列を求めよ.
(2)条件$(*)$を満たす点$\mathrm{P}(x,\ y)$の軌跡は$2$直線となる.この$2$直線の方程式を求めよ.
実数$a \geqq 0$に対して,
「点$(a,\ 0)$を中心とする半径$1$の円周上の点$\mathrm{P}$で,条件$(*)$を満たすものがちょうど$2$つある」 $(**)$
とする.この$2$点を$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$とするとき,$i=1,\ 2$に対して,$\mathrm{P}_i$の$f$による像を$\mathrm{Q}_i$とし,$\triangle \mathrm{OP}_i \mathrm{Q}_i$の面積を$S_i$とする.
(3)上の条件$(**)$を満たす$a$の値の範囲を求めよ.
(4)$S_i$を$y_i$を用いて表せ.また,和$S_1+S_2$の値を$a$を用いて表せ.
龍谷大学 私立 龍谷大学 2012年 第1問
つぎの連立不等式の表す領域を$D$とする.
\[ x^2+y^2-1 \leqq 0,\quad 5x+5y+1 \geqq 0 \]
つぎの問いに答えなさい.

(1)領域$D$を図示しなさい.
(2)点$\mathrm{P}(x,\ y)$が,この領域$D$内を動くとき,$x+\sqrt{3}y$の最大値および最小値を求めなさい.
龍谷大学 私立 龍谷大学 2012年 第4問
$0 \leqq x \leqq 2\pi$の範囲で関数
\[ f(x)=x+1-\cos x+\sqrt{3} \sin x \]
を考える.

(1)$f(x)$の極値を求め,$y=f(x)$のグラフを描きなさい.
(2)曲線$y=f(x)$,$x$軸,直線$x=2\pi$で囲まれた部分の面積を求めなさい.
東京理科大学 私立 東京理科大学 2012年 第3問
$k>0$として,座標平面上の曲線$C:y=e^{kx}$を考える.曲線$C$上の点$\mathrm{P}$を,$\mathrm{P}$における$C$の接線$\ell_1$が原点$\mathrm{O}$を通るようにとる.また,点$\mathrm{P}$を通リ$\ell_1$と直交する直線を$\ell_2$とし,図のように,曲線$C$,直線$\ell_2$,$x$軸,$y$軸の$4$つで囲まれた図形を$A$とする.ただし,$e$は自然対数の底である.
(図は省略)

(1)点$\mathrm{P}$の座標と,直線$\ell_2$と$x$軸との交点の座標を求めよ.
(2)図形$A$を$x$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
(3)$k$が$k>0$を動くとき,$(2)$で求めた$V$の最小値と,それを与える$k$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
以下の問いに答えなさい.

(1)$2$次関数$y=x^2-1$と$1$次関数$y=x+1$,$y=-2x$の$3$つのグラフをかきなさい.
(2)次の連立不等式の表す図形の面積を$S_1$とする.
\[ \left\{ \begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1 \\
y \geqq 0
\end{array} \right. \]
このとき$S_1$の値を求めなさい.
(3)次の連立不等式の表す図形の面積を$S_2$とする.
\[ \left\{ \begin{array}{l}
y \geqq x^2-1 \\
x \geqq 0 \\
y \leqq -2x
\end{array} \right. \]
このとき$S_2$の値を求めなさい.
学習院大学 私立 学習院大学 2012年 第1問
正の実数$a,\ b,\ c$に対して,不等式
\[ \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqq \frac{9}{a+b+c} \]
を証明せよ.また,等号が成り立つための条件を求めよ.
学習院大学 私立 学習院大学 2012年 第2問
$n$を自然数とする.$1$枚のコインを投げ続けて,裏が出た時点で終了するゲームを行う.ただし,$n$回続けて表が出たときもゲームは終了するものとする.このゲームで出た表の数を$p$とするとき,次のように得点を与える.

$p=0$ならば得点は$0$
$p \geqq 1$ならば得点は$3^p$である.

得点の期待値を求めよ.
学習院大学 私立 学習院大学 2012年 第3問
$a$を実数とする.方程式
\[ \cos^2 x-2a \sin x-a+3=0 \]
の解で$0 \leqq x<2\pi$の範囲にあるものの個数を求めよ.
学習院大学 私立 学習院大学 2012年 第3問
$a,\ b$を正の実数とする.$3$次関数
\[ f(x)=ax(x-b)^2 \]
は$f(4)=27$をみたし,$0<x<4$において極大値$2$をもつ.$a,\ b$を求めよ.
学習院大学 私立 学習院大学 2012年 第4問
$p,\ a,\ b$を実数,ただし$p>0$,$a>0$とする.直線$L:y=px$と直線$L^\prime$が原点で直交している.放物線$C:y=ax^2+bx+1$は$L$と$L^\prime$に同時に接している.

(1)$a$と$b$を,$p$を用いて表せ.
(2)$p=2$のとき,$L$と$L^\prime$と$C$で囲まれた部分の面積を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。