タグ「不等号」の検索結果

319ページ目:全4604問中3181問~3190問を表示)
南山大学 私立 南山大学 2012年 第2問
放物線$C:y=x^2-kx (k>0)$と直線$\ell:y=3x$がある.$C$と$\ell$の交点で原点$\mathrm{O}$以外の点を$\mathrm{A}$とする.$C$と$\ell$で囲まれた部分の面積を$S_1$,$C$と$x$軸で囲まれた部分の面積を$S_2$とする.

(1)$\mathrm{A}$の座標を$k$で表せ.
(2)$S_1$を$k$で表せ.
(3)$\mathrm{A}$を通り$x$軸に垂直な直線と,$x$軸および$C$で囲まれた部分の面積を$S_3$とする.$S_3$を$k$で表せ.
(4)$(3)$の$S_3$と$S_2$が等しいとき,$k$の値を求めよ.
南山大学 私立 南山大学 2012年 第2問
$2$つの曲線$C_1:y=-x^2+10$と$\displaystyle C_2:y=\frac{1}{2}x^2-6x+k$がある.ただし,$k$は実数とする.$C_1$,$C_2$はそれぞれ直線$\ell$に接し,$C_1$と$\ell$の接点の$x$座標を$a$,$C_2$と$\ell$の接点の$x$座標を$b$とする.

(1)$\ell$の方程式を,$a$を用いて表せ.
(2)$k$を$a$で表せ.
(3)$b>0$であり,$C_2$と$y$軸および$\ell$で囲まれた図形の面積が$\displaystyle \frac{9}{2}$であるとき,$a$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
次の$[ ]$にあてはまる最も適当な数または式を記入しなさい.

(1)多項式$P(x)$を$x^3+1$で割ったときの余りが$2x^2+13x$であった.このとき,$P(x)$を$x+1$で割ったときの余りは$[カ]$である.また,$P(x)$を$x^2-x+1$で割ったときの余りは$[キ]$である.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,
\[ S_n=n^3+2012 \]
で与えられるとする.この数列$\{a_n\}$の初項$a_1$は$a_1=[ク]$である.また,$2$以上の自然数$n$に対して,$a_n$を$n$を用いて表すと$a_n=[ケ]$となる.
(3)$a>1$とし,三角形$\mathrm{ABC}$で$\mathrm{AB}=2$,$\mathrm{BC}=a$,$\angle \mathrm{A}=30^\circ$であるようなものについて考える.このとき$k=[コ]$として,$1<a<k$の場合はこのような三角形は$2$つ存在するが,$a \geqq k$の場合はこのような三角形は$1$つしか存在しない.また$a \geqq k$の場合,$\mathrm{AC}$の長さを$a$を用いて表すと$\mathrm{AC}=[サ]$となる.
(4)$3$個のさいころを同時に投げるとき,出る目の数の積が$3$の倍数になる確率は$[シ]$であり,出る目の数の積が$15$の倍数になる確率は$[ス]$である.
(5)実数$x,\ y$が$2$つの不等式
\[ x^2+y^2 \leqq 25,\quad x-2y \geqq 5 \]
を同時に満たすとき,$y-2x$の最大値は$[セ]$であり,最小値は$[ソ]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)関数$f(\theta)=\sin^2 \theta-\sqrt{3} \cos \theta+2 (0 \leqq \theta \leqq \pi)$は,$\theta=[ア]$で最大値$[イ]$をとる.
(2)実数$x,\ y$が$2x+3y+1=0$を満たすとき,$4^x+8^y$は$x=[ウ]$で最小値$[エ]$をとる.
(3)実数$a$に対して,$3$次方程式$9x^3-3x^2+ax-1=0$の$1$つの解が$\displaystyle \frac{1}{3}$のとき,$a=[オ]$である.また,この方程式の$\displaystyle \frac{1}{3}$以外の解を$\alpha,\ \beta$とするとき,$\displaystyle \alpha^{18}+\beta^{18}=\frac{[カ]}{3^9}$である.
(4)平面上に,原点$\mathrm{O}$を中心とする半径$1$の円$C$と,点$(3,\ 0)$を通る傾き$m$の直線$\ell$がある.$\ell$と$C$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わるとき,$m$の範囲は$[キ]$である.また,線分$\mathrm{AB}$の長さが$\displaystyle \frac{\sqrt{10}}{5}$のとき,$m=[ク]$である.
(5)$a$を$0$でない実数とする.関数$f(x)=a(x^3-3x^2+a)$の極小値が$1$であり,極大値が$7$より大きいとき,$a=[ケ]$で,その極大値は$[コ]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$\triangle \mathrm{ABC}$において,$\mathrm{AC}=10$,$\mathrm{BC}=6$,$\displaystyle \cos A=\frac{4}{5}$とし,辺$\mathrm{AC}$の中点を$\mathrm{M}$とする.このとき,$\tan A=[ア]$であり,$\triangle \mathrm{BCM}$の外接円の半径は$[イ]$である.
(2)関数$f(x)=|x-1|-|x+2|+|x-3|$が,$f(a)=0$を満たすとき,$a=[ウ]$である.また,$y=f(x)$のグラフと$x$軸で囲まれた図形の面積は$[エ]$である.
(3)$k$を正の実数とする.$3$次関数$f(x)=kx^3+3kx^2-9kx+3$の極大値は$[オ]$である.また,$f(x)=0$が正の実数解を持つような$k$の値の範囲は$[カ]$である.
(4)円$C:x^2+(y-2)^2=1$と点$\mathrm{A}(2,\ 0)$がある.この$C$上の点$\mathrm{P}$と$\mathrm{A}$を結ぶ線分$\mathrm{PA}$の中点を$\mathrm{Q}$とするとき,$\mathrm{Q}$の軌跡の方程式は$[キ]$である.また,$\mathrm{Q}$の軌跡と$C$が交わる点の$x$座標は$[ク]$である.
(5)$a>1$に対して最小値が$2$である関数$f(x)=\log_a (x^2-2x+3)$と,関数$g(x)=\log_2 (2x-1)^2$がある.このとき,$a=[ケ]$であり,$f(x)=g(x)$を満たす$x$の値は$[コ]$である.
南山大学 私立 南山大学 2012年 第3問
$a$を実数として,関数$\displaystyle f(x)=a \cos x-\frac{\cos x}{1+\sin x} \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$を考える.

(1)$t=\sin x$とし,$f^\prime(x)$を$a$と$t$の式で表せ.
(2)$\displaystyle f^\prime \left( \frac{\pi}{6} \right)=0$となるように$a$の値を定めよ.そのとき,$f(x)$は$\displaystyle x=\frac{\pi}{6}$で極大となることを示し,極大値$\displaystyle f \left( \frac{\pi}{6} \right)$を求めよ.
(3)$a$の値を$(2)$のように定めるとき,曲線$y=f(x)$と$x$軸と$y$軸とで囲まれた部分の面積$S$を求めよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$次の整式$F(x)$を$x^2-3x+2$で割ると,余りは$-3x-5$である.これより,$F(2)=[ア]$である.この$F(x)$を$x^2+3x+2$で割った余りが$3x+7$であるとき,$F(0)=[イ]$である.
(2)関数$\displaystyle f(x)=\frac{9 \cdot 10^x}{(1+10^x)^2}$を考える.$f(x) \geqq 2$となる$x$の値の範囲は$[ウ]$である.また,等式$\displaystyle f(-x)=\frac{a \cdot 10^{bx}}{(1+10^x)^2}$がすべての$x$について成り立つように定数$a,\ b$の値を定めると$(a,\ b)=[エ]$である.
(3)直線$\ell:y=7x+6a-5$と放物線$y=(x-a)^2-5$が異なる$2$点で交わるとき,定数$a$のとりうる値の範囲を求めると$[オ]$である.また,直線$y=2x+a$に関して,$\ell$と対称な直線の方程式を求めると$[カ]$である.
(4)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\displaystyle \frac{1}{\sin \theta}+\frac{1}{\cos \theta}=4 \sqrt{3}$のとき,$\sin \theta \cos \theta$の値を求めると$\sin \theta \cos \theta=[キ]$であり,$\sin^4 \theta+\cos^4 \theta$の値を求めると$\sin^4 \theta+\cos^4 \theta=[ク]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$つの行列$A=\left( \begin{array}{cc}
5 & 3 \\
2 & 1
\end{array} \right)$,$B=\left( \begin{array}{rr}
1 & -3 \\
-2 & 5
\end{array} \right)$,$C=\left( \begin{array}{rr}
2 & -3 \\
-4 & 5
\end{array} \right)$がある.$A$の逆行列$A^{-1}$を求めると,$A^{-1}=[ア]$である.$B^2A^3CA$を求めると,$B^2A^3CA=[イ]$である.
(2)$k>1$とする.$2$次方程式$kx^2+(1-2k)x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-2(k+1)x+4k=0$の解の$1$つは$\beta$であり,もう$1$つの解を$\gamma$とする.このとき,$\beta$を求めると$\beta=[ウ]$である.さらに,$\beta-\alpha=\gamma-\beta$が成り立つとき,$k$の値を求めると$k=[エ]$である.
(3)$y=e^x+e^{-x}$とする.$y=3$のとき,$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}$の値は$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}=[オ]$である.また,$y=4$のとき,$x=[カ]$である.
(4)原点$\mathrm{O}$からの距離と点$\mathrm{A}(1,\ 1)$からの距離の比が$\sqrt{2}:1$である点$\mathrm{P}(x,\ y)$の軌跡は方程式$[キ]$で与えられる.この図形上の点$\mathrm{Q}(s,\ t)$における接線の傾きが$2$であるとき,$\mathrm{Q}$の座標は$(s,\ t)=[ク]$である.
(5)区別できない$9$個の球を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの箱のいずれかに入れる.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$に入れた球の個数をそれぞれ$a,\ b,\ c,\ d$とし,$X=1000a+100b+10c+d$とする.$X$のとりうる値を小さい順に並べたときに$31$番目にくる値を求めると$[ケ]$であり,$X$が$4$桁の数となる球の入れ方は$[コ]$通りある.
甲南大学 私立 甲南大学 2012年 第1問
以下の問いに答えよ.

(1)$\displaystyle \frac{n^2}{250},\ \frac{n^3}{256},\ \frac{n^4}{243}$がすべて整数となるような正の整数$n$のうち,最小のものを求めよ.
(2)$90^\circ<x<180^\circ$のとき,不等式$\displaystyle \frac{\sin 5x}{\sin x}<\frac{\cos 5x}{\cos x}$を満たす$x$の値の範囲を求めよ.
甲南大学 私立 甲南大学 2012年 第2問
$a$を正の実数とする.空間内の$3$点$\mathrm{A}(0,\ 1,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とし,点$\mathrm{P}(0,\ 1-a,\ 0)$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問いに答えよ.

(1)等式$\overrightarrow{\mathrm{PH}}=\overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$が成り立つように実数$s,\ t$の値を定めよ.
(2)線分$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,点$\mathrm{H}$は直線$\mathrm{AM}$上にあることを示せ.
(3)実数$a$が$0<a<3$の範囲を動くとき,四面体$\mathrm{BCHP}$の体積の最大値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。