タグ「不等号」の検索結果

317ページ目:全4604問中3161問~3170問を表示)
立教大学 私立 立教大学 2012年 第2問
数列$\{a_k\}$は,すべての自然数$n$に対して,
\[ \sum_{k=1}^n a_k=\frac{3}{8}-\frac{3^n}{n+2} \]
を満たす.このとき,次の問いに答えよ.

(1)初項$a_1$を求めよ.
(2)$k \geqq 2$のとき,$a_k$を$k$の式で表せ.
(3)数列$\{b_k\}$を,すべての自然数$k$に対して,$\displaystyle b_k=\frac{(k+1)(k+2)}{3^{k-1}}a_k$により定めるとき,$\displaystyle \sum_{k=1}^n b_k$を$n$の式で表せ.
東京理科大学 私立 東京理科大学 2012年 第4問
$\mathrm{O}$を原点とする座標空間の$4$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$,$\mathrm{D}(1,\ 1,\ -2)$について,次の各問いに答えよ.また,$0<m<1$とする.

(1)$\mathrm{AB}$を$m:(1-m)$に内分する点を$\mathrm{P}_m$とし,$\mathrm{OP}_m$を$m:1$に内分する点を$\mathrm{Q}_m$とする.このとき,$\mathrm{Q}_{\frac{1}{5}}$の座標は,$\displaystyle \left( \frac{[ラ]}{[リ][ル]},\ \frac{[レ]}{[ロ][ワ]},\ [ヲ] \right)$である.

(2)$\mathrm{OC}$を$m:1$に内分する点を$\mathrm{R}_m$,$\mathrm{AD}$の中点を$\mathrm{M}$とし,$\mathrm{R}_m \mathrm{M}$を$m:(1-m)$に内分する点を$\mathrm{S}_m$とすると,$\mathrm{S}_{\frac{1}{2}}$の座標は,$\displaystyle \left( \frac{[ン][あ]}{[い][う]},\ \frac{[え]}{[お][か]},\ \frac{[き]}{[く]} \right)$である.
(3)$\overrightarrow{\mathrm{CQ}_m}$と$\overrightarrow{\mathrm{OA}}$について,
\[ \overrightarrow{\mathrm{CQ}_m} \cdot \overrightarrow{\mathrm{OA}}=\frac{1}{m+1}(-[け]m^2+[こ]m-[さ]) \]
である.したがって,この$2$つのベクトルは垂直にはなりえない.
(4)$\overrightarrow{\mathrm{CQ}_m}$と$\overrightarrow{\mathrm{AB}}$が垂直となるような$m$の値は,$\displaystyle m=\frac{[し]}{[す]}$である.

(5)$\displaystyle \frac{m+1}{m} \times \mathrm{Q}_m \mathrm{S}_m$が最小となるのは$\displaystyle m=\frac{[せ][そ]}{[た][ち]}$のときであり,その最小値は$\displaystyle \sqrt{\frac{[つ][て]}{[と][な]}}$である.
立教大学 私立 立教大学 2012年 第3問
座標平面上に点$\mathrm{P}(s,\ t)$がある.ただし,$t<0$である.点$\mathrm{P}$から放物線$\displaystyle C:y=\frac{1}{2}x^2$に引いた$2$本の異なる接線の接点を$\mathrm{A}$,$\mathrm{B}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta$とするとき,$\alpha+\beta$を$s$を用いて表せ.ただし,$\alpha < \beta$とする.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の式を$s$と$t$を用いて表せ.
(3)直線$\ell$と放物線$C$で囲まれる部分の面積を$S$とするとき,$S$を$s$と$t$を用いて表せ.
(4)点$\mathrm{P}$が点$(0,\ -3)$を中心とする半径$2$の円周上にあるとき,$S$の最大値,および最大値を与える点$\mathrm{P}$の座標をすべて求めよ.
北海学園大学 私立 北海学園大学 2012年 第1問
$2$次関数$f(x)=ax^2+bx+c$の定義域を$-4 \leqq x \leqq 2$とする.曲線$y=f(x)$は$3$点$(2,\ 12)$,$(-1,\ -12)$,$(-3,\ -8)$を通る.ただし,$a,\ b,\ c$は定数とする.

(1)$a,\ b,\ c$の値をそれぞれ求めよ.
(2)$f(x)$の最大値と最小値をそれぞれ求めよ.
(3)$f(x)$が最大値をとるときの$x$の値を$k$とする.放物線$y=px^2+qx+q$の頂点の座標が$(k,\ f(k))$であるとき,定数$p$と$q$の値をそれぞれ求めよ.ただし,$p \neq 0$とする.
北海学園大学 私立 北海学園大学 2012年 第3問
$\mathrm{AB}=x^2$,$\mathrm{BC}=x+2$,$\mathrm{CA}=2x^2-6x+9$の三角形$\mathrm{ABC}$が二等辺三角形になるとき,次の問いに答えよ.ただし,$x>0$とする.

(1)$x$のとりうる値をすべて求めよ.
(2)それぞれの$x$の値について,$\cos A,\ \cos B,\ \cos C$を求めよ.
(3)それぞれの$x$の値について,三角形$\mathrm{ABC}$の外接円の半径$R$を求めよ.
北海学園大学 私立 北海学園大学 2012年 第5問
等差数列$\{a_n\}$の初項から第$n$項までの和を$S_n$で表す.$S_4=1152$,$S_{10}=2640$であるとき,次の問いに答えよ.ただし,$n=1,\ 2,\ 3,\ \cdots$とする.

(1)数列$\{a_n\}$の初項と公差を求めよ.
(2)$a_n<100$を満たす最小の$n$を求めよ.
(3)$S_n$の最大値とそのときの$n$の値を求めよ.
北海学園大学 私立 北海学園大学 2012年 第5問
関数$f(x)=x^4+2x^3+ax^2+b$は$x=-2$で極値をとり,$f(-1)=5$を満たす.ただし,$a$と$b$は定数とする.

(1)$a$と$b$の値をそれぞれ求めよ.
(2)$f(x)$の定義域を$-3 \leqq x \leqq 1$とするとき,$f(x)$の最大値と最小値をそれぞれ求めよ.
(3)曲線$y=f(x)$,$x$軸,および$y$軸で囲まれた図形の面積$S$を求めよ.
北海学園大学 私立 北海学園大学 2012年 第3問
放物線$C:y=-x^2+9x$上の点$\mathrm{P}(t,\ -t^2+9t)$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{H}$とする.また,点$\mathrm{Q}(9,\ 0)$に対して,三角形$\mathrm{PHQ}$の面積を$S_1$とする.ただし,$0<t<9$である.

(1)$S_1$を$t$を用いて表せ.
(2)$S_1$の最大値とそのときの$t$の値を求めよ.
(3)$t$が上の(2)で求めた値をとるとき,$C$と直線$\mathrm{PQ}$で囲まれた図形の面積$S_2$を求めよ.
北海学園大学 私立 北海学園大学 2012年 第4問
曲線$C:y=\sqrt{x}$上の点$\mathrm{P}(a,\ \sqrt{a})$における接線を$\ell$とする.曲線$C$,直線$x=a$,および$x$軸で囲まれた図形の面積が$18$であるとき,次の問いに答えよ.ただし,$a$は定数とし,$a>0$である.

(1)$a$の値を求めよ.
(2)接線$\ell$の方程式を求めよ.
(3)接線$\ell$,曲線$C$,および$x$軸で囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
北海学園大学 私立 北海学園大学 2012年 第1問
$x$の関数
\[ y=x^4+4x^3+2(2-a)x^2-4ax-1 \quad (-4 \leqq x \leqq 2) \]
について次の問いに答えよ.ただし,$a$は定数とする.

(1)$t=x^2+2x (-4 \leqq x \leqq 2)$とおくとき,$t$の値の範囲を求めよ.また,$y$を$t$と$a$を用いて表せ.
(2)$a=0$のとき,$y$の値の範囲を求めよ.このとき,$y$が最小になるような$x$の値を求めよ.
(3)$0 \leqq a \leqq 1$のとき,$y$の値の範囲を$a$を用いて表せ.このとき,$y$が最小になるような$x$の値を$a$を用いて表せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。