タグ「不等号」の検索結果

316ページ目:全4604問中3151問~3160問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
次の問いに答えよ.

(1)自然数$a=[(43)],\ b=[(44)]$は
\[ \frac{31}{99}=\frac{1}{a}+\frac{1}{b}+\frac{1}{11ab} \]
をみたす.ただし$a<b$とする.
(2)$4$人でプレーするゲームの大会がある.全部で$v$人のプレーヤーがゲームを繰り返し行い,各プレーヤーは他のすべてのプレーヤーと必ず$1$回だけ対戦する.\\
\quad この大会の総ゲーム数を$b$とし,各プレーヤーは$r$回のゲームに参加するとする.たとえば$r=1$のとき,$v=[(45)],\ b=[(46)]$であるが,$r=2,\ 3$のときは条件をみたす大会は成立しない.$r=4$のとき,$v=[(47)][(48)],\ b=[(49)][(50)]$である.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~キに当てはまる数または式を記入せよ.

(1)$0 \leqq \theta < \pi$の範囲で,$\cos^2 \theta+2\sqrt{3}\sin \theta \cos \theta-\sin^2 \theta$の最小値は[ア]であり,そのときの$\theta$の値は[イ]である.
(2)$\displaystyle \frac{a^x-a^{-x}}{2}=1$のとき,$x=\log_a y$と表せば,$y=[ウ]$である.ただし,$a>0$,$a \neq 1$とする.
(3)さいころを$3$回投げ,出た目を順に,百の位,十の位,一の位にして$3$桁の自然数をつくる.このとき,この自然数が$6$で割り切れ,さらに桁の並びを逆にしても$6$で割り切れる確率は[エ]である.
(4)最高次の係数が$1$の整式$P(x)$で,条件$P(2)=0,\ P(0)=1,\ P(1)=2$をみたすもののうち,最も次数の低いものは$P(x)=[オ]$である.
(5)座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(6,\ 2)$を頂点とする三角形$\mathrm{OAB}$の外心の座標は$([カ],\ [キ])$である.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~ケに当てはまる数または式を記入せよ.

(1)$\sqrt{2} \div \sqrt[4]{4} \times \sqrt[12]{32} \div \sqrt[6]{2}=2^a$とすると$a=[ア]$である.
(2)座標空間に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 2,\ 1)$,$\mathrm{B}(1,\ 3,\ 5)$,$\mathrm{C}(x,\ y,\ z)$がある.ベクトル$\overrightarrow{\mathrm{OC}}$は,ベクトル$\overrightarrow{\mathrm{OA}}$およびベクトル$\overrightarrow{\mathrm{OB}}$と垂直である.このとき,$(x,\ y,\ z)=[イ]$である.ただし,$x>0$,$|\overrightarrow{\mathrm{OC}}|=1$とする.
(3)$i$を虚数単位として,複素数$x=\sqrt{3}+\sqrt{7}i$を考える.$x$と共役な複素数を$\overline{x}$とするとき,$x^3+\overline{x}^3$の値は$[ウ]$である.
(4)$\log_2x+\log_4y=1$のとき,$x^2+y$の最小値は$[エ]$である.
(5)$4$つの数字$0,\ 1,\ 2,\ 6$から,$18$で割り切れる$4$桁の数を作るとすると$[オ]$通りできる.ただし,同じ数字は$2$度以上使わないものとする.
(6)$\cos 75^\circ$の値は$[カ]$である.
(7)$\displaystyle \left( x^3-\frac{1}{2} \right)^{10}$の展開式における$x^{15}$の係数は$[キ]$である.
(8)三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とする.$\angle \mathrm{OAC}=40^\circ$,$\angle \mathrm{OCB}=25^\circ$のとき,$\angle \mathrm{AOC}=[ク]$であり,$\angle \mathrm{ABO}=[ケ]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第6問
$a,\ b,\ c$を自然数とし,$1 \leqq a \leqq 10$,$c \leqq b \leqq a$とする.次のプログラムは$a^2+b^2+c^2$が平方数となる場合を求めるものである.解答欄に適切なものを入れよ.

$\mathrm{100 FOR A=1 TO 10}$
$\mathrm{110 FOR B=1 TO [(201)][(202)]}$
$\mathrm{120 FOR C=1 TO B}$
$\mathrm{130 FOR I=1 TO 2 * [(203)][(204)]}$
$\mathrm{140 LET S=A * A+B * B+C * C-I * I}$
$\mathrm{150 IF S=<0 THEN GOTO [(205)][(206)]}$
$\mathrm{160 NEXT [(207)][(208)]}$
$\mathrm{170 IF S<0 THEN GOTO [(209)][(210)]}$
$\mathrm{180 PRINT A; "**2+" ;B; "**2+" ;C; "**2=" ;I; "**2"}$
$\mathrm{190 NEXT [(211)][(212)]}$
$\mathrm{200 NEXT B}$
$\mathrm{210 NEXT A}$
$\mathrm{220 END}$
東京理科大学 私立 東京理科大学 2012年 第2問
$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を満たす実数とする.$xy$平面上に$2$点$\mathrm{P}(\cos \theta,\ \sin \theta)$と$\displaystyle \mathrm{Q}(\frac{3}{2}\cos \theta,\ \frac{3}{2}\sin \theta)$がある.点$\mathrm{R}$を$\mathrm{PR}:\mathrm{QR}=1:2$を満たす点とする.

(1)点$\mathrm{R}$が直線$y \cos \theta-x \sin \theta=0$上にあるとき,それらの点の座標は
\[ \left( \frac{[ク]}{[ケ]} \cos \theta,\ \frac{[コ]}{[サ]} \sin \theta \right),\quad \left( \frac{[シ]}{[ス]} \cos \theta,\ \frac{[セ]}{[ソ]} \sin \theta \right) \]
である.ただし,$\displaystyle \frac{[ク]}{[ケ]}>\frac{[シ]}{[ス]}$とする.
(2)$\mathrm{R}$の軌跡は方程式
\[ \left( x-\frac{[タ]}{[チ]} \cos \theta \right)^2+\left( y-\frac{[ツ]}{[テ]} \sin \theta \right)^2=\frac{[ト]}{[ナ]} \]
が表す円$D(\theta)$である.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を動くとき,(2)で求めた$D(\theta)$が通過する部分の面積は$\displaystyle \frac{[ニ]}{[ヌネ]} \pi$である.
自治医科大学 私立 自治医科大学 2012年 第7問
$\displaystyle \sin \alpha=\frac{3}{5}$,$\displaystyle \sin \beta =\frac{4}{5} \left( 0<\alpha<\frac{\pi}{2},\ \frac{\pi}{2}<\beta<\pi \right)$のとき,$\cos (\alpha+\beta)=\gamma$となる.$25(\gamma+1)$の値を求めよ.
自治医科大学 私立 自治医科大学 2012年 第9問
関数$y=2 \cos \theta-\sin^2 \theta (0 \leqq \theta<2\pi)$の最大値を$M$,最小値を$m$とする.$(M+m)$の値を求めよ.
自治医科大学 私立 自治医科大学 2012年 第10問
$x,\ y$が$3$つの不等式:$2x+y \geqq 0$,$x+2y \leqq 6$,$4x-y \leqq 6$を満たすとき,$y-x$の最大値を求めよ.
自治医科大学 私立 自治医科大学 2012年 第12問
放物線$C:y=x^2-2$と直線$L:y=m(2x-3)$($m$は実数)について考える.$C$と$L$が相異なる$2$点で交わるとき,$m$のとり得る値の範囲は,$m<a$,$m>b (a<b)$となる.$b$の値を求めよ.
自治医科大学 私立 自治医科大学 2012年 第24問
$2$つの曲線$C_1:f(x)=x^3+3x^2$,$C_2:g(x)=x^3+3x^2+c$($c>0$,$c$は実数定数)について考える.点$\mathrm{P}(p,\ f(p))$における$C_1$の接線と点$\mathrm{Q}(q,\ g(q))$における$C_2$の接線が一致するとき($p \neq q$),$c=-A(p+1)^3$と表記される.$A$の値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。