タグ「不等号」の検索結果

315ページ目:全4604問中3141問~3150問を表示)
明治大学 私立 明治大学 2012年 第4問
次の空欄$[ア]$から$[ク]$に当てはまるものをそれぞれ答えよ.

放物線$\displaystyle C_1:y=\frac{x^2}{8}+4$と楕円$\displaystyle C_2:x^2+\frac{y^2}{4}=2$を考える.

$C_1$上の点$(4a,\ 2a^2+4)$での接線の方程式は
\[ y= [ア]x-[イ] \]
である.$C_1$上の点$(4a,\ 2a^2+4)$における接線が同時に$C_2$の接線でもあるような$a$の値は全部で$4$個ある.それらを小さい方から順に$a_1,\ a_2,\ a_3,\ a_4$とすれば,$a_1=[ウ],\ a_2=[エ]$である.$C_2$の囲む図形の面積は$[オ]$である.点$(4a_1,\ 2{a_1}^2+4)$における$C_1$の接線を$y=f(x)$,点$(4a_4,\ 2{a_4}^2+4)$における$C_1$の接線を$y=g(x)$とする.このとき,$y=g(x)$と$C_2$の接点は$([カ],\ [キ])$である.$6$つの不等式

$\displaystyle y \geqq f(x),\quad y \geqq g(x),\quad x^2+\frac{y^2}{4} \geqq 2,\quad y \leqq \frac{x^2}{8}+4,$
$4a_1 \leqq x \leqq 4a_4,\quad [キ] \leqq y$

を同時にみたす領域の面積は$[ク]-3\pi$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2012年 第2問
次の連立不等式を満たす整数$x$の値をすべて求めよ.
\[ \left\{
\begin{array}{l}
x^2-3x-6 \geqq -2 \\
x^2-3x-6 < 2x
\end{array}
\right. \]
倉敷芸術科学大学 私立 倉敷芸術科学大学 2012年 第3問
次の連立不等式を解け.
\[ \left\{
\begin{array}{l}
\displaystyle \frac{2}{3}x+1 > \frac{7}{3} \\
x+3 \geqq 5x-15
\end{array}
\right. \]
倉敷芸術科学大学 私立 倉敷芸術科学大学 2012年 第3問
次の連立不等式を解け.
\[ \left\{
\begin{array}{l}
\displaystyle \frac{2}{3}x+1 > \frac{7}{3} \\
x+3 \geqq 5x-15
\end{array}
\right. \]
倉敷芸術科学大学 私立 倉敷芸術科学大学 2012年 第2問
次の連立不等式を満たす整数$x$の値をすべて求めよ.
\[ \left\{
\begin{array}{l}
x^2-3x-6 \geqq -2 \\
x^2-3x-6 < 2x
\end{array}
\right. \]
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~シに当てはまる数または式を記入せよ.

(1)方程式$x^3-4x^2+ax+b=0$の$1$つの解が$1-2i$であるとき,実数解は$[ア]$であり,$a=[イ]$,$b=[ウ]$である.ただし,定数$a,\ b$は実数とし,$i$は虚数単位とする.
(2)サイコロを続けて$2$回振り,最初に出た目が$a$,次に出た目が$b$ならば座標平面上に直線$\ell:y=ax-b$を描く.この試行において,直線$\ell$が放物線$y=x^2$と相異なる$2$点で交わる確率は$[エ]$である.
(3)不等式$x^2+y^2+6x+4y-12 \leqq 0$の表す領域の面積は$[オ]$である.
(4)$\displaystyle x=\frac{1}{\sqrt{2}-1},\ y=\frac{1}{\sqrt{2}+1}$であるとき,$x^3+y^3-2xy^2=[カ]$である.
(5)$0 \leqq \theta < 2\pi$のとき,$\sqrt{3}\cos \theta-\sin \theta=r \sin (\theta +\alpha)$の形に変形すると,$r=[キ]$,$\alpha=[ク]$である.ただし,$0 \leqq \alpha < 2\pi$とする.
(6)実数からなる数列$\{a_n\}$が$a_{n+1}^3=2a_n^2,\ a_1=4$を満たすとき,$\log_2a_n=[ケ]$である.
(7)図のように東西$6$本,南北$6$本の道路で区画された場所がある.南西の端の地点$\mathrm{A}$から北東の端の地点$\mathrm{B}$へ行く最短ルートは$[コ]$通りある.
(図は省略)
(8)$3$次関数$f(x)=x^3-3a^2x+b (a>0)$が極大値$13$と極小値$-19$を持つならば$a=[サ]$,$b=[シ]$である.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~サに当てはまる数または式を記入せよ.

(1)$\displaystyle x=\frac{\sqrt{5}-1}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{\sqrt{5}-1}$のとき,$x^3+y^3$の値は$[ア]$である.
(2)互いに異なる定数$a,\ b,\ c$が$\displaystyle \frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}$を満たすとき,$\displaystyle \frac{(b+c)(c+a)(a+b)}{abc}$のとる値は$[イ]$である.ただし,$abc \neq 0$とする.
(3)白玉$3$個と黒玉$3$個が入っている袋から玉を$1$個取り出し,色を調べてもとに戻す.この試行を$3$回繰り返すとき,白玉を$2$回取り出す確率は$[ウ]$である.
(4)整式$P(x)$を$x-1$で割った余りが$-2$,$x-2$で割った余りが3,$x-3$で割った余りが8ならば,$P(x)$を$(x-1)(x-2)(x-3)$で割った余りは$[エ]$である.
(5)数列$\{a_n\}$は$a_1=-7$と漸化式$2a_{n+1}=3a_n+8 \ (n=1,\ 2,\ 3,\ \cdots)$で定められている.この数列の一般項は$a_n=[オ]$である.
(6)平行四辺形ABCDにおいて,辺ABを$2:1$に内分する点をE,辺BCの中点をF,辺CDの中点をGとする.線分CEと線分FGの交点をHとすると,$\overrightarrow{\mathrm{AH}}=[カ]\overrightarrow{\mathrm{AB}}+[キ]\overrightarrow{\mathrm{AD}}$となる.
(7)関数$f(x)=x^2-2ax+a+6$がすべての実数$x$に対して$f(x)>0$を満たすならば,定数$a$の値の取りうる範囲は,$[ク]<a<[ケ]$となる.
(8)関数$f(x)=ax^2+bx+1$が$f(1)=-6$と$\displaystyle \int_0^3 \{ f^\prime(x) \}^2 \, dx=63$を満たすならば,定数$a,\ b$の値は$a=[コ],\ b=[サ]$である.ただし,$f^\prime(x)$は$f(x)$の導関数を表す.
立教大学 私立 立教大学 2012年 第3問
座標平面上に円$x^2+y^2=4$と円上の点$\mathrm{P}(1,\ -\sqrt{3})$,$\mathrm{Q}(-1,\ -\sqrt{3})$が与えられている.$0<\theta<\pi$のとき,円上の点を$\mathrm{R}(2\cos \theta,\ 2\sin \theta)$とし,$\angle \mathrm{QPR}=\alpha,\ \angle \mathrm{PQR}=\beta$とする.このとき,次の問(1)~(3)に答えよ.

(1)点$(2,\ 0)$を$\mathrm{A}$,点$(-2,\ 0)$を$\mathrm{B}$とするとき,弧$\mathrm{PAR}$に対する中心角と弧$\mathrm{QBR}$に対する中心角を$\theta$を用いて表せ.
(2)$\alpha,\ \beta$を$\theta$を用いて表せ.
(3)$2 \sin \alpha=\sqrt{3} \sin \beta$となるときの点$\mathrm{R}$の座標を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
集合$\{1,\ 2,\ 3,\ \cdots,\ n\}$の部分集合の中で,連続する自然数を含まない部分集合の個数を$f(n)$とする.ただし空集合は連続する自然数を含まない部分集合とする.たとえば$n=4$のとき,$\{1,\ 3,\ 4\}$は連続する自然数を含む部分集合,$\{2\}$や$\{1,\ 3\}$は連続する自然数を含まない部分集合である.このとき$f(1)=[(101)]$,$f(2)=[(102)]$,$f(3)=[(103)]$となる.$n \geqq 3$のとき
\[ f(n)=f(n-1)+[(104)]f(n-[(105)]) \]
である.$f(10)=[(106)][(107)][(108)]$となる.
立教大学 私立 立教大学 2012年 第3問
曲線$y=x^3-x$を$C_1$とし,放物線$y=x^2+ax+b$を$C_2$とする.また,放物線$C_2$の頂点の座標は$(t,\ -t^2)$である.このとき,次の問いに答えよ.

(1)関数$f(x)=x^3-x$の極値を求めよ.
(2)$a$を$t$で表せ.
(3)曲線$C_1$と放物線$C_2$が異なる共有点をちょうど$2$個もつ$t$の値が$2$つある.それらの値$t_1,\ t_2 (t_1<t_2)$を求めよ.
(4)$t=t_1$のとき,曲線$C_1$と放物線$C_2$によって囲まれた領域の面積を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。