タグ「不等号」の検索結果

314ページ目:全4604問中3131問~3140問を表示)
立教大学 私立 立教大学 2012年 第2問
関数$\displaystyle y=\frac{1}{x}$のグラフの$x>0$の部分を曲線$C$とする.実数$t$は$0<t<1$をみたすものとし,$C$上に点P$\displaystyle \left(t,\ \frac{1}{t} \right)$をとる.このとき,次の問(1)~(5)に答えよ.

(1)曲線$C$上の点$\mathrm{A}(1,\ 1)$における接線$\ell$の方程式を求めよ.
(2)点$\mathrm{P}$を通り直線$\ell$と平行な直線を$m$とし,直線$m$と曲線$C$の共有点で点$\mathrm{P}$と異なる点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.
(3)原点を$\mathrm{O}$とし,$2$つの線分$\mathrm{OP}$,$\mathrm{OQ}$および曲線$C$で囲まれた部分の面積を$S$とする.面積$S$を$t$で表せ.
(4)点$\mathrm{P}$を通り$y$軸に平行な直線,点$\mathrm{Q}$を通り$y$軸に平行な直線,曲線$C$,および$x$軸で囲まれた部分が,$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.体積$V$を$t$で表せ.
(5)$\displaystyle \lim_{t \to 1-0} \frac{S}{V}$を求めよ.
法政大学 私立 法政大学 2012年 第2問
$f(x)=x^2-5$として,数列$\{a_n\}$を次のように定義する.\\
\quad $a_1=3$,点$(a_n,\ f(a_n))$における曲線$y=f(x)$の接線が$x$軸と交わる点の$x$座標を$a_{n+1}$とする$(n=1,\ 2,\ 3,\ \cdots)$。\\
\quad 次の問いに答えよ.

(1)$a_{n+1}$を$a_n$で表せ.
(2)命題$P(n)$を$\lceil \sqrt{5} < a_{n+1} < a_n \rfloor$とするとき,すべての正の整数$n$に対して$P(n)$が成り立つことを数学的帰納法によって証明せよ.
(3)次の不等式が共に成り立つ1より小さい正の数$r$が存在することを示せ.

(4)$a_{n+1}-\sqrt{5} \leqq r(a_n-\sqrt{5}) \quad (n=1,\ 2,\ 3,\ \cdots)$
(5)$a_n -\sqrt{5} \leqq r^{n-1} \quad (n= 1,\ 2,\ 3,\ \cdots)$
法政大学 私立 法政大学 2012年 第1問
連立不等式
\[ x+2y \leqq 2a^2+a+3,\quad x \geqq a+1,\quad y \geqq a^2 \]
の表す領域を$D$とおく.ただし,$a$は実数の定数とする.また,点$(x,\ y)$が$D$上を動くときの,$x+y$の最小値を$m$,最大値を$M$とおく.

(1)$a=1$のとき,$D$を図示せよ.さらに,そのときの$m$と$M$の値を求めよ.
(2)$\displaystyle m=\frac{3}{2}$となるような$a$の値を求めよ.
(3)$M$の値が最小となるような$a$の値と,そのときの$M$の値を求めよ.
立教大学 私立 立教大学 2012年 第3問
$a$は$\displaystyle a>\frac{1}{2}$を満たす定数とする.座標平面上の半径$R$の円$C_1:x^2+(y-a)^2=R^2$は,$y>0$の表す領域にある.円$C_1$が放物線$y=x^2$と共有する点は$2$点のみである.このとき,次の問いに答えよ.

(1)共有点の$y$座標および$a$を,$R$を用いて表せ.
(2)円$C_1$と放物線$y=x^2$の共有点における放物線の$2$つの接線のうち傾きが正のものを$\ell$とする.$\ell$の式を$R$を用いて表せ.
(3)点$(0,\ -a)$を中心とする半径$r$の円$C_2$が直線$\ell$と接するとき,$r$を$R$を用いて表せ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$1$から$9$までの番号が書かれた$9$個のポールが袋に入っている.この袋の中から$1$個のボールを取り出し,その番号を確認してからもとに戻す試行を考える.

(i) この試行を$3$回行ったとき,同じ番号のボールを少なくとも$2$回取り出す確率は$\displaystyle\frac{[ア][イ]}{[ウ][エ]}$である.

(ii) この試行を$2$回行ったとき,取り出したボールの番号の差が$1$以下となる確率は$\displaystyle\frac{[オ][カ]}{[キ][ク]}$である.

(2)$t$を$t>1$をみたす実数とし,$xy$平面上で次の方程式で表される$3$直線$\ell_1,\ \ell_2,\ \ell_3$を考える.
\[ \begin{array}{l}
\ell_1:tx-y=0 \\
\ell_2:x-ty-t^2=0 \\
\ell_3:x+ty-t^2=0
\end{array} \]
$\ell_1,\ \ell_2,\ \ell_3$で囲まれる三角形の面積を$S(t)$とし,この三角形の$x$軸の上側の部分の面積を$S_1(t)$,$x$軸の下側の部分の面積を$S_2(t)$とする.

(i) $S_2(t)=2S_1(t)$となる$t$の値は$t=\sqrt{[ケ]}$である.
(ii) $\displaystyle S(t)=\frac{t^{[コ]}}{t^{[サ]}-[シ]}$であり,$S(t)$を$t$で微分して符号を調べることにより,$S(t)$は$\displaystyle t=\left( \frac{[ス]}{[セ]} \right)^{\frac{[ソ]}{[タ]}}$で最小値をとることがわかり,最小値は
\[ \frac{7}{[チ]} \left( \frac{[ツ]}{[テ]} \right)^{\frac{[ト]}{[ナ]}} \]
となる.

(3)$p$を実数とし,方程式$\displaystyle x^3-px^2-\frac{13}{4}x+\frac{15}{8}=0$は$3$つの実数解$a,\ b,\ c (a>b>c)$をもつとする.$a+c=2b$をみたすとき,
\[ a=\frac{[ニ]}{[ヌ]},\quad b=\frac{[ネ]}{[ノ]},\quad c=\frac{[ハ]}{[ヒ]},\quad p=\frac{[フ]}{[ヘ]} \]
である.
(4)$\mathrm{O}$を原点とする空間内に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.
\[ |\overrightarrow{\mathrm{OA}}|=2,\quad |\overrightarrow{\mathrm{OB}}|=1,\quad |\overrightarrow{\mathrm{OC}}|=3 \]
であり,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$のどの$2$つのなす角も$\displaystyle \frac{\pi}{3}$であるとする.$\mathrm{G}$を$\triangle \mathrm{ABC}$の重心とし,$\mathrm{M}$を$\mathrm{AB}$の中点,$\mathrm{N}$を$\mathrm{BC}$の中点,$\mathrm{L}$を$\mathrm{MN}$の中点とする.このとき,
\[ |\overrightarrow{\mathrm{OG}}|=\frac{[ホ]}{[マ]},\quad |\overrightarrow{\mathrm{GL}}|=\frac{\sqrt{[ミ][ム]}}{[メ][モ]} \]
である.
法政大学 私立 法政大学 2012年 第1問
次の問いに答えよ.

(1)$a>0$として,$x=\log_2 a$とおく.
$x=5$のとき,$a=[アイ]$である.次に,$2a \neq 1$のとき,不等式
\[ \log_2 256a > 3 \log_{2a} a\]
の左辺は$[ウ]+x$,右辺は$\displaystyle \frac{[エ]x}{[オ]+x}$である.したがって,上の不等式を満たす$x$の値の範囲は
\[ [カキ] < x < [クケ],\quad x > [コサ] \]
である.
(2)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$を満たすとする.また,
\[ s=\frac{1}{4}\cos \theta, \quad t=\frac{16\sqrt{3}}{3}\sin \left( \theta+\frac{2}{3}\pi \right) \]
とおく.$s$のとり得る値の範囲は
\[ 2^{\frac{[シス]}{[セ]}} \leqq s \leqq 2^{[ソタ]} \]
であり,$t$のとり得る値の範囲は
\[ [チ]\sqrt{[ツ]} - \frac{[テ]\sqrt{[ト]}}{[ナ]} \leqq t \leqq [ニ] \]
である.
\[ st=[ヌ]+\frac{[ネ]\sqrt{[ノ]}}{[ハ]} \sin \left( 2\theta + \frac{[ヒ]}{[フ]}\pi \right) \]
であり,$st<1$となる$\theta$の値の範囲は,$\displaystyle \theta > \frac{\pi}{[ヘ]}$である.
法政大学 私立 法政大学 2012年 第2問
$2$つの数列$\{a_n\},\ \{b_n\}$は,つぎの関係式を満たす.
\[ \begin{array}{ll}
a_1=5, & a_{n+1}=4a_n+3b_n, \\
b_1=1, & b_{n+1}=3a_n+kb_n
\end{array} \quad (n \geqq 1) \]
すべての$n$に対し$a_n-b_n$が一定の値であるとき,つぎの問いに答えよ.

(1)$k$の値を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$c_n=a_n+lb_n$とする.$\{c_n\}$が等比数列となる正の整数$l$を求めよ.また,この$\{c_n\}$に対し,$\displaystyle S_n=\sum_{k=1}^n c_k$を求めよ.
青森中央学院大学 私立 青森中央学院大学 2012年 第9問
関数$y=2\cos \theta - \sin^2 \theta (0 \leqq \theta \leqq 2\pi)$の最大値を$M$,最小値を$m$とする.$M+m$の値を求めよ.
青森中央学院大学 私立 青森中央学院大学 2012年 第10問
$x,\ y$が3つの不等式$:\ 2x+y \geqq 0, x+2y \leqq 6, 4x-y \leqq 6$を満たすとき,$y-x$の最大値を求めよ.
稚内北星学園大学 私立 稚内北星学園大学 2012年 第1問
$x$の関数$\displaystyle f(x)=\frac{\log x}{x^2}$に対して,次の問いに答えよ.

(1)$f(x)$の導関数$f^{\, \prime}(x)$を求め,$f(x)$の極値を求めよ.
(2)$f(x)$の第2次導関数$f^{\, \prime\prime}(x)$を求め,さらに$f^{\, \prime\prime}(x)=0$を満たす$x$の値を求めよ.
(3)$x>0$において,$2\sqrt{x}-\log x > 0$を示せ.
(4)$\displaystyle \lim_{x \to \infty} \frac{\log x}{x^2}$を求めよ.
(5)$\displaystyle \lim_{a \to \infty} \int_1^a f(x)\, dx = \int_1^c f(x) \, dx$を満たす正の定数$c$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。