タグ「不等号」の検索結果

312ページ目:全4604問中3111問~3120問を表示)
明治大学 私立 明治大学 2012年 第2問
以下の$[ ]$にあてはまる値を答えよ.
\[ f(x) = \frac{1}{2}x^2 -3x -1+|x^2-2x-3| \]
とおく.

(1)不等式$x^2-2x-3 \leqq 0$を解くと$[あ]$となる.
(2)方程式$f(x)=0$の実数解をすべて求めると$[い]$となる.
(3)関数$y=f(x)$の定義域を$-2 \leqq x \leqq 5$とするとき,値域は$[う]$となる.
明治大学 私立 明治大学 2012年 第3問
次の各設問の$[12]$から$[15]$までの空欄に適するものを書け.また,$[ ]$には数字を入れよ.

$xy$平面上で連立不等式$3x-y+1 \geqq 0,\ x+3y-3 \geqq 0,\ 2x+y-6 \leqq 0$の表す領域を$D$とする.
(1)点$(x,\ y)$が領域$D$を動くとき,$3x+2y$の最大値は$[12]$であり,最小値は$[13]$である.
(2)領域$D$は三角形である.この三角形の外接円の中心の座標は$([14],\ [15])$であり,半径は$[ ]$である.
明治大学 私立 明治大学 2012年 第2問
直線$y=ax \cdots\cdots①$,放物線$y=-x(x-3) \cdots\cdots②$がある.こごで$a$はある定数で$0<a<3$とする.このとき,次の各問の$[ ]$にあてはまる数を入れよ.

(1)直線$①$と放物線$②$によって囲まれた部分の面積を$S_1$とすると,
\[ S_1 = \frac{[ア]}{[イ]} \left( [ウ]-a \right)^{[エ]} \]
である。
(2)放物線$②$と$x$軸で囲まれる部分の面積が直線$①$によって二つの部分に分割され,直線$①$と放物線$②$によって囲まれた部分の面積と,直線$①$,放物線$②$および$x$軸によって囲まれた部分の面積の比が$2:1$になるとき,
\[ a = [オ]-\sqrt[3]{[カ][キ]} \]
である.
(3)$\displaystyle a=\frac{1}{3}$のとき,直線$①$と放物線$②$で囲まれた部分の面積$S_1$が,直線$①$,放物線$②$および直線$x=b (b>3)$で囲まれた部分の面積$S_2$と等しいとき,$b$の値は$[ク]$である.
明治大学 私立 明治大学 2012年 第1問
次の空欄$[ア]$から$[エ]$に当てはまるものを答えよ.ただし,$\log$は自然対数,$e$はその底である.

(1)$\displaystyle\lim_{n \to \infty} \left( \sqrt{n^2+n} - \sqrt{n^2-n} \right) = [ア]$

(2)$\displaystyle\lim_{x \to 0} \frac{32^x-1}{8^x-1} = [イ]$

(3)ある物質$\mathrm{P}$は時間とともに変化し,その量が減少する.時刻$t$における物質$\mathrm{P}$の量$y(t)$は,
\[ y(t) = ae^{-kt} \quad (t \geqq 0) \]
であるとする.ただし,$a>0,\ k>0$は定数であり,$a$は時刻$t=0$における物質$\mathrm{P}$の量である.物質$\mathrm{P}$の量が$\displaystyle \frac{a}{2}$となる時刻$t_0$は
\[ t_0 = [ウ]\log [エ]\]
である.
明治大学 私立 明治大学 2012年 第2問
次の$[ ]$に当てはまる$0$~$9$の数字を解答欄に書け.

座標平面上にある$2$点$\mathrm{P}(2t,\ 2t^3)$,$\mathrm{Q}(-4,\ 4t^2-8)$が,$-2 \leqq t \leqq 2$の範囲で動く.$\ell:y=x+b$とし,$\mathrm{P}$と$\ell$の距離を$\alpha$,$\mathrm{Q}$と$\ell$の距離を$\beta$とする.$\mathrm{P}$は,$\ell$より上側にあり,$\mathrm{Q}$は,$\ell$より下側にあるとする.$\mathrm{P}$,$\mathrm{Q}$,$\ell$の位置関係から$b$の範囲は,
$[ア]t^2 - [イ] < b < [ウ] t^3 - [エ]t$
となる.従って,$t$の範囲は,
$-[オ] < t < [カ]$
でなければならない.

$\displaystyle \alpha = \frac{1}{\sqrt{2}} |[キ]t^3 - [ク]t - b|,$
$\displaystyle \beta = \frac{1}{\sqrt{2}} |[ケ]t^2 - [コ] - b|$

だから,$\alpha = \beta$とすると,$b = (t+[サ])(t^2 - [シ])$である.
従って,$\displaystyle \alpha = \beta = \frac{1}{\sqrt{2}} |(t-[ス])(t^2-[セ])|$となり,
この値が,最大となるのは,$t=\frac{[ソ]-\sqrt{[タ]}}{[チ]}$のときで,そのときの値は
\[ \alpha = \frac{[ツ][テ]\sqrt{[ト]}+[ナ]\sqrt{[ニ][ヌ]}}{[ネ][ノ]} \]
である.
明治大学 私立 明治大学 2012年 第3問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の成分は,$a+d-1=ad-bc$を満たすとする.また,数列$x_0,\ x_1,\ x_2,\ \cdots$と$y_0,\ y_1,\ y_2,\ \cdots$は
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=A \left( \begin{array}{c}
x_{n-1} \\
y_{n-1}
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.座標平面上の点$(x_n,\ y_n)$を$\mathrm{P}_n$と表し,$\mathrm{O}$は原点とする.点$\mathrm{O}$,$\mathrm{P}_0$,$\mathrm{P}_1$は同一直線上にはないと仮定し,$g=ad-bc$とおく.
以下の$[ ]$にあてはまるものを,$g,\ n$を用いて表せ.

(1)$\overrightarrow{\mathrm{OP}}_2=([え]) \overrightarrow{\mathrm{OP}}_1+([お]) \overrightarrow{\mathrm{OP}}_0$である.
(2)$g \neq 1$のとき
\[ \overrightarrow{\mathrm{OP}}_n=\frac{[か]}{1-g} \overrightarrow{\mathrm{OP}}_1+\frac{[き]}{1-g} \overrightarrow{\mathrm{OP}}_0 \quad (n=2,\ 3,\ 4,\ \cdots) \]
である.
(3)$|g|<1$のとき
\[ \begin{array}{l}
\lim_{n \to \infty}x_n=[く]x_1+[け]x_0 \\
\lim_{n \to \infty}y_n=[く]y_1+[け]y_0
\end{array} \]
である.
(4)$0<g<1$とする.点$\displaystyle \left( \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n \right)$は線分$\mathrm{P}_1 \mathrm{P}_0$を$[こ]:1$に外分する.
明治大学 私立 明治大学 2012年 第1問
次の各設問の$[1]$から$[9]$までの空欄にあてはまる数値を入れよ.

(1)関数$\displaystyle y=3 \sin \left( 2x- \frac{2}{3} \pi \right)$のグラフは$y=3 \sin 2x$のグラフを$x$軸方向に$[1]$だけ平行移動したものであり,その正で最小の周期は$[2]$である.
(2)座標平面上の$\triangle \mathrm{ABC}$において,線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{P}$の座標が$(1,\ 5)$,線分$\mathrm{AC}$を$4:1$に外分する点$\mathrm{Q}$の座標が$(3,\ -3)$,$\triangle \mathrm{ABC}$の重心の座標が$(0,\ 2)$であるとき,点$\mathrm{A}$の座標は$([3],\ [4])$である.
(3)関数$\displaystyle y=\left( \log_3 \frac{x}{9} \right)^3 + 6\log_{\frac{1}{3}} \sqrt{3x} (1 \leqq x \leqq 27)$の最小値は$[5]$,最大値は$[6]$である.また,最大値$[6]$をとるときの$x$は$[7]$である.
(4)水を満たしたある容器の底に穴を開けてから$x$分後における容器内の水深を$y$メートルとすると,$y$は次式で表される.ただし,$0 \leqq x \leqq 90$とする.
\[ y = 0.9 \times 10^{-4}x^2 - 1.8\times 10^{-2} x +1 \]
$x_1$分から$x_2$分の間に,容器から出た水の量を$\int_{x_1}^{x_2} y\, dx$とする.最初の$1$分間($x_1=0,\ x_2=1$)に出た水の量に対する$5$分から$6$分の間($x_1=5,\ x_2=6$)に出た水の量の割合は約$[8] \%$である.容器内の水深$y$が,$x=0$のときの半分になるのは約$[9]$分後である.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第1問
次の問いに答えよ.問い$(1)$~$(3)$については,$[ ]$にあてはまる適切な数値を記入せよ.

(1)$x$の$2$次不等式
\[ 6x^2-(16a+7)x+(2a+1)(5a+2) < 0 \]
をみたす整数$x$が$10$個となるように,正の整数$a$の値を定めると$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{2}$,$\mathrm{BC}=2$,$\mathrm{CA}=\sqrt{3}$とし外心を$\mathrm{O}$とする.このとき,$\overrightarrow{\mathrm{AO}}=s\overrightarrow{\mathrm{AB}}+t\overrightarrow{\mathrm{AC}}$をみたす実数$s,\ t$の値は$s=[イ],\ t=[ウ]$である.
(3)袋$\mathrm{A}$には赤玉$2$個と白玉$1$個,袋$\mathrm{B}$には赤玉$1$個と白玉$2$個が入っている.袋$\mathrm{A}$から玉を$2$個取り出して袋$\mathrm{B}$に入れ,よくかき混ぜて,袋$\mathrm{B}$から玉を$2$個取り出して袋$\mathrm{A}$に入れる.このとき,袋$\mathrm{A}$に入っている白玉の個数を$X$とすると,$X=0$となる確率は$[エ]$であり,$X=2$となる確率は$[オ]$である.
(4)関数$f(x)=|x^3|$が$x=0$で微分可能であるかどうか調べよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第2問
$a$を実数とする.$xy$平面上の$2$曲線

\qquad $C_1: y=e^x, \quad C_2: y=-e^{1-x}+a$
を考える.
$C_1$上の点$\mathrm{P}(t,\ e^t) (t>0)$における$C_1$の接線$\ell_t$が,$C_2$上の点$\mathrm{Q}(s,\ -e^{1-s}+a)$における$C_2$の接線にもなっているとき,次の問いに答えよ.ただし,$e$は自然対数の底である.
(1)$t$と$s$の関係式を求めよ.また,$a$を$t$を用いて表せ.
(2)$C_1,\ \ell_t$および$y$軸で囲まれた部分の面積を$S_1(t)$とし,$C_2,\ \ell_t$および$y$軸で囲まれた部分の面積を$S_2(t)$とする.ただし,$\mathrm{Q}$が$y$軸上にあるときは$S_2(t)=0$とする.

(i) $S_1(t),\ S_2(t)$を$t$を用いて表せ.
(ii) $S(t)=S_1(t)+S_2(t)$とする.$t$が$t>0$の範囲を動くとき,$t$の関数$S(t)$の最小値を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第3問
$n$を$3$以上の整数とする.$xyz$空間の平面$z=0$上に,$1$辺の長さが$4$の正$n$角形$P$があり,$P$の外接円の中心を$\mathrm{G}$とおく.半径$1$の球$B$の中心が$P$の辺に沿って$1$周するとき,$B$が通過してできる立体を$K_n$とする.このとき,次の問いに答えよ.

(1)$P$の隣り合う$2$つの頂点$\mathrm{P}_1$,$\mathrm{P}_2$をとる.$\mathrm{G}$から辺$\mathrm{P}_1 \mathrm{P}_2$に下ろした垂線と$\mathrm{P}_1 \mathrm{P}_2$との交点を$\mathrm{Q}$とするとき,$\mathrm{GQ}>1$となることを示せ.
(2)次の各問に答えよ.

(i) $K_n$を平面$z=t (-1 \leqq t \leqq 1)$で切ったときの断面積$S(t)$を$t$と$n$を用いて表せ.
(ii) $K_n$の体積$V(n)$を$n$を用いて表せ.

(3)$\mathrm{G}$を通り,平面$z=0$に垂直な直線を$\ell$とする.$K_n$を$\ell$のまわりに$1$回転させてできる立体の体積$W(n)$を$n$を用いて表せ.
(4)$\displaystyle\lim_{n \to \infty}\frac{V(n)}{W(n)}$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。