タグ「不等号」の検索結果

311ページ目:全4604問中3101問~3110問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の各問いに答えよ.

(1)3つの行列の積
\[ \left(
x \quad y
\right) \left( \begin{array}{cc}
2 & a \\
a & 1
\end{array}
\right)
\left(
\begin{array}{c}
x \\
y
\end{array}
\right) \]
の成分が任意の実数$x,\ y$に対し0以上となるような実数$a$の範囲を不等式で表すと[ア]となる.
(2)$\angle B$が直角の直角三角形ABCの2辺AB,\ BCの長さをそれぞれ$3,\ 1$とする.また,$0<x<1$を満たす$x$に対し線分BCを$1:x$に外分する点をDとする.いま,$\angle \text{CAD}=2 \angle\text{BAC}$が成り立っているとすると,$x=[イ]$であり,$\triangle$ACDの外接円の半径は[ウ]である.
(3)関数$f(x),\ g(x)$が
\[
\left\{
\begin{array}{l}
f(x) = xe^x + 2x \displaystyle\int_0^2|g(t)|\, dt - 1 \\
\\
g(x) = x^2 -x \displaystyle\int_0^1 f(t)\,dt
\end{array}
\right.
\]
を満たすとき,$\displaystyle\int_0^2 |g(t)|\, dt$の値は[エ]または[オ]である.求める過程も解答欄(3)に書きなさい.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
円$x^2+(y-1)^2=1$と外接し,$x$軸と接する円で中心の$x$座標が正であるものを条件Pを満たす円ということにする.

(1)条件Pを満たす円の中心は,曲線$y=[カ]\ (x>0)$の上にある.また,条件Pを満たす半径9の円を$C_1$とし,その中心の$x$座標を$a_1$とすると,$a_1=[キ]$である.
(2)条件Pを満たし円$C_1$に外接する円を$C_2$とする.また,$n=3,\ 4,\ 5,\cdots$に対し,条件Pを満たし,円$C_{n-1}$に外接し,かつ円$C_{n-2}$と異なる円を$C_n$とする.円$C_n$の中心の$x$座標を$a_n$とするとき,自然数$n$に対し$a_{n+1}$を$a_n$を用いて表しなさい.求める過程も書きなさい.
(3)(1),\ (2)で定めた数列$\{a_n\}$の一般項を求めなさい.求める過程も書きなさい.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$\mathrm{ABCDE}$を$1$辺の長さが$1$の正方形$\mathrm{ABCD}$を底面とし,$4$個の正三角形を側面とする正四角錐とする.
(図は省略)

(1)$\triangle \mathrm{CDE}$の重心を$\mathrm{G}$とする.ベクトル$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AG}} = [セ]$となる.
(2)$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}$が平面$\alpha$上の任意のベクトルと垂直なとき,$\overrightarrow{p}$は平面$\alpha$と垂直であるという.$\overrightarrow{p} = a\, \overrightarrow{\mathrm{AB}} + b\, \overrightarrow{\mathrm{AD}} + c\, \overrightarrow{\mathrm{AE}}\ (a,\ b,\ c\text{は実数})$が$\triangle \mathrm{CDE}$を含む平面と垂直なとき,$a:b:c=[ソ]$である.よって,$|\overrightarrow{p}|=1$かつ$\overrightarrow{p} \cdot \overrightarrow{\mathrm{AD}} > 0$となるように$a,\ b,\ c$を定めると,$\overrightarrow{p} = [タ]$となる.
(3)正四角錐$\mathrm{ABCDE}$の$\triangle \mathrm{CDE}$に,各辺の長さが$1$の正四面体$\mathrm{CDEF}$を貼り付ける.ベクトル$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AF}}=[チ]$となる.また,$\mathrm{H}$を辺$\mathrm{EC}$の中点とすると,$\overrightarrow{\mathrm{HA}} \cdot \overrightarrow{\mathrm{HF}}= [ツ]$であり,$\triangle \mathrm{AHF}$の面積は[テ]である.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
$a>0$とし,$x$の$3$次関数$f(x)$を
\[ f(x) = x^3 -5ax^2 + 7a^2x \]
と定める.また,$t \geqq 0$に対し,曲線$y=f(x)$と$x$軸および$2$直線$x=t$,$x=t+1$で囲まれた部分の面積を$S(t)$で表す.

(1)$S(0)=[ト]$である.
(2)$f(x)$は$x=[ナ]$で極小値をとる.曲線$y=f(x)$上にあり,$x$の値$[ナ]$に対応する点を$\mathrm{P}$とする.$a$の値が変化するとき,点$\mathrm{P}$の軌跡は曲線$y=[ニ] \ (x>0)$である.
(3)$S(t)=S(0)$を満たす正の実数$t$が存在するような$a$の値の範囲を不等式で表すと$[ヌ]$となる.以下,$a$の値はこの範囲にあるとする.$c$を$S(c)=S(0)$を満たす最大の正の実数とする.区間$0 \leqq t \leqq c$における$S(t)$の最大値,最小値をそれぞれ$M(a)$,$m(a)$とするとき,$M(a)+m(a)=[ネ]$となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
曲線上の点$\mathrm{P}$を通り,$\mathrm{P}$におけるこの曲線の接線$\ell$と直交する直線$m$をこの曲線の法線とよぶ.$a,\ b>0$とし,$2$次曲線$x^2 = 4a(y+b)$の法線が$(0,\ 2a)$を通るとき,接点$\mathrm{P}(p,\ q)$は
\[ p^2 = [(41)]ab, \quad q= [(42)] \]
をみたす.したがって条件をみたす接線と法線の組$(\ell,\ m)$は$2$組ある.この$4$本の直線で囲まれる$4$角形$S$の面積は$[(43)][(44)](a+b)\sqrt{ab}$である.また$2$本の法線と$2$次曲線で囲まれる部分で$S$に含まれる部分の面積は
\[ \left( \frac{[(45)][(46)]a+[(47)][(48)]b}{[49]} \right) \sqrt{ab} \]
である.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えよ.

(1)$0 \leqq x \leqq \pi$において
\[ y= \sin x + 2 \cos \left( x - \frac{\pi}{6} \right) \]
の最大値は$\sqrt{[ア]}$であり,最小値は$-\sqrt{[イ]}$である.
(2)$xy = 4x -y+28$を満たす正の整数$x,\ y$の組$(x,\ y)$は全部で[ウ]組ある.
(3)放物線$y=\displaystyle\frac{1}{2}x^2$は,$x$軸方向に[エ],$y$軸方向に$\displaystyle\frac{[オ]}{[カ]}$だけ平行移動すると,直線$y=-x$と直線$y=3x$の両方に接する.
(4)実数$x,\ y$が$x^2+xy+2y^2=1$を満たすとき,$y^2$がとり得る値の範囲は
\[ [キ] \leqq y^2 \leqq \frac{[ク]}{[ケ]} \]
である.
明治大学 私立 明治大学 2012年 第1問
次の各問の$[ ]$に入る数値を書け.

(1)$x^{\log_5 x} = 25x$を満たす$x$は,大きい方から順に$x=[$1$]$と,$x=[$2$]$である.
(2)$y=x^3-ax^2+x+4$と$y=x$が,異なる$2$点のみを共有するとき,$a=[$3$]$であり,$x>0$の範囲で,$x=[$4$]$のとき共有点を持つ.
(3)放物線$\displaystyle C_1\ :\ y=\frac{x^2}{2}$と放物線$\displaystyle C_2\ :\ y=\frac{x^2}{2}-2x+4$にともに接する直線を$\ell$とするとき,$\ell$の傾きは,
$[$5$]$であり,$C_1,\ C_2,\ \ell$で囲まれた領域の面積は$[$6$]$である.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えなさい.

(1)関数
\[ f(x) = 2\sqrt{3}\,\sin^2\frac{x}{2}-\sin x+a \quad (0 \leqq x \leqq \pi) \]
の最小値が$\sqrt{3}$であるとする.このとき,$a=[ア]$であり,$f(x)$が最小となるのは$x=\displaystyle\frac{\pi}{[イ]}$のときである.
(2) $n$を$5$以上の自然数とする.$1$以上$n$以下の自然数から互いに隣り合わない$2$つを選ぶ組合せは
\[ \frac{1}{[ウ]} \left( n- [エ]\right) \left( n- [オ] \right) \]
通りあり,どの$2$つも隣り合わない$3$つを選ぶ組合せは
\[ \frac{1}{[カ]} \left( n- [キ]\right) \left( n- [ク] \right) \left( n- [ケ] \right) \]
通りある.ただし,$[エ] < [オ], \quad [キ] < [ク] < [ケ]$とする.
(3)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$4:3$に内分する点を$\mathrm{D}$とし,線分$\mathrm{AD}$と$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\mathrm{AP}:\mathrm{PD}=s:(1-s)$,$\mathrm{BP}:\mathrm{PC}=t:(1-t)$とするとき
\[ \displaystyle s=\frac{[コ]}{[サ]}, \quad t=\frac{[シ]}{[ス]} \]
である.また,$\mathrm{OP}$の延長と辺$\mathrm{AB}$との交点を$\mathrm{Q}$とするとき
\[ \overrightarrow{\mathrm{OQ}} = \frac{[セ]}{[ソ]} \overrightarrow{\mathrm{OP}} \]
である.
早稲田大学 私立 早稲田大学 2012年 第4問
円$C$とその内部の点$\mathrm{P}_0$が与えられている.初め$\mathrm{P}_0$にある動点が,円周上の点$\mathrm{P}_1$まで線分$\mathrm{P}_0 \mathrm{P}_1$上を動き,$\mathrm{P}_1$からは,$\mathrm{P}_1$における円$C$の接線$\ell_1$と線分$\mathrm{P}_0 \mathrm{P}_1$のなす角が$\ell_1$と線分$\mathrm{P}_1 \mathrm{P}_2$のなす角に等しくなるように向きを変えて,円周上の点$\mathrm{P}_2$まで線分$\mathrm{P}_1 \mathrm{P}_2$上を動く(図例$1$).以下,自然数$n$について,円周上の点$\mathrm{P}_n$に至ったあとは,$\mathrm{P}_n$における円$C$の接線$\ell_n$と線分$\mathrm{P}_{n-1} \mathrm{P}_n$のなす角が$\ell_n$と線分$\mathrm{P}_n \mathrm{P}_{n+1}$のなす角に等しくなるように向きを変え,円周上の点$\mathrm{P}_{n+1}$まで線分$\mathrm{P}_n \mathrm{P}_{n+1}$上を動き,この動きをくり返す(図例$2$).線分$\mathrm{P}_0 \mathrm{P}_1$と接線$\ell_1$のなす角を$\alpha (\displaystyle 0 \leqq \alpha \leqq \frac{\pi}{2})$とする.

(1)$\mathrm{P}_m=\mathrm{P}_1$となる$3$以上の自然数$m$が存在するような角$\alpha$をすべて決定せよ.
(2)点$\mathrm{P}_1$の位置によって角$\alpha$は変化し得る.角$\alpha$が最大となる$\mathrm{P}_1$の位置,および最小となる$\mathrm{P}_1$の位置を求めよ.
(3)$\mathrm{P}_4=\mathrm{P}_1$となる点$\mathrm{P}_1$がとれるような点$\mathrm{P}_0$の存在範囲を求めよ.
(図は省略)
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ラ]$までに当てはまる数字$0$~$9$を求めて記入せよ.ただし,分数は既約分数として表しなさい.

(1)数列$\{a_n\},\ \{b_n\} (n=1,\ 2,\ 3,\ \cdots)$は次の関係式を満たすとする.
\[ a_1=0, \quad \left\{ \begin{array}{l}
b_n=\displaystyle\frac{1}{5}a_n+1 \\
a_{n+1}=3b_n+2
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$b_1 = [ア]$で,$n \geq 1$に対して$b_{n+1} = \displaystyle\frac{[イ]}{[ウ]} b_n + \frac{[エ]}{[オ]}$となる.これより,
\[ b_n = \displaystyle\frac{[カ]}{[キ]} - \frac{[ク]}{[ケ]} \left(\frac{[コ]}{[サ]} \right)^{n-1} \quad (n \geq 1) \]
となるので,
\[ \lim_{n \to \infty} b_n = \frac{[シ]}{[ス]}, \qquad \lim_{n \to \infty} \frac{b_{2n}-b_n}{b_{n+1}-b_n} = \frac{[セ]}{[ソ]} \]
となる。また,
\[ \sum_{n=1}^{\infty} (a_{2n}-a_n) = \frac{[タ][チ][ツ]}{[テ][ト]} \]
である.
(2)複素数$z = \cos\theta + i\sin\theta (0 \leq \theta<2\pi)$に対して,複素数$\omega$を
\[ \omega = (4+3i)z + 6i\,\overline{z} \]
で定める.ただし,$i$は虚数単位を,$\overline{z}=\cos\theta-i\sin\theta$は$z$と共役な複素数を表す.
いま$z$の実部と虚部がともに$0$以上となる範囲で$\theta$を動かす.このとき,$\omega$の実部の最大値は[ナ],最小値は[ニ]であり,$\omega \overline{\omega}$の最大値は[ヌ][ネ][ノ],最小値は[ハ][ヒ]である.ただし,$\overline{\omega}$は$\omega$と共役な複素数を表す.

(3)$x>0$で定義された微分可能な関数$f(x)$が,
\[ f^\prime(x) = 2\log x + \frac{1}{7-2e} \int_1^{e} \frac{f(t)}{t}\, dt, \quad f(1)=0 \]
を満たすとする.ここで,$f^\prime(x)$は$f(x)$の導関数,$\log$は自然対数,$e$は自然対数の底である.$f(x)$を求めると,
\[ f(x) = [フ] x\log x - \frac{[ヘ]}{[ホ]} x + \frac{[マ]}{[ミ]} \quad (x>0) \]
となる.関数$f(x)$は$\displaystyle x=e^{-\frac{[ム]}{[メ]}}$のとき,最小値
\[ -[モ]e^{-\frac{[ヤ]}{[ユ]}} + \frac{[ヨ]}{[ラ]}\]
をとる。
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。