タグ「不等号」の検索結果

309ページ目:全4604問中3081問~3090問を表示)
早稲田大学 私立 早稲田大学 2012年 第2問
初項を$a_0 \geqq 0$とし、以下の漸化式で定まる数列$\left\{a_n\right\}_{n=0,1,\cdots}$を考える.
\[ a_{n+1} = a_n - \left[\sqrt{a_n}\,\right] \qquad (n \geqq 0) \]
ただし,$[x]$は$x$を超えない最大の整数を表す.つぎの問に答えよ.

(1)$a_0=24$とする.このとき,$a_n=0$となる最小の$n$を求めよ.
(2)$m$を$2$以上の整数とし,$a_0=m^2$とする.このとき,$1 \leqq j \leqq m$をみたす$j$に対して$a_{2j-1},\ a_{2j}$を$j$と$m$で表せ.
(3)$m$を$2$以上の整数,$p$を$1 \leqq p \leqq m-1$をみたす整数とし,$a_0=m^2-p$とする.このとき$a_k=(m-p)^2$となる$k$を求めよ.さらに,$a_n=0$となる最小の$n$を求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100$($x \geqq 0$かつ$y \geqq 0$)を$C$とする.点$\mathrm{P},\ \mathrm{Q}$は$C$上にあり,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.ただし,点$\mathrm{P}$と点$\mathrm{Q}$が一致するときは,点$\mathrm{R}$は点$\mathrm{P}$に等しいものとする.

(1)点$\mathrm{P}$の座標が$(6,\ 8)$であり,点$\mathrm{Q}$が$C$上を動くとき,点$\mathrm{R}$の軌跡は,
\[ (x-[キ])^2+(y-[ク])^2=[ケ],\ [コ] \leqq x \leqq [サ],\ [シ] \leqq y \leqq [ス] \]
である.
(2)点$\mathrm{P}$,$\mathrm{Q}$が$C$上を自由に動くとき,点$\mathrm{R}$の動く範囲の面積は,
\[ \frac{[セ]}{[ソ]}\pi + [タ] \]
である.ただし,$[ソ]$はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第5問
実数$a$に対して関数$f(a)$を,
\[ f(a) = \int_1^2 \left|\frac{a}{x}-1\right|\, dx \]
と定める.$a$が$1 \leqq a \leqq 2$の範囲を動くとき,$f(a)$の最小値は$[ナ]+[ニ]\sqrt{[ヌ]}$であり,最大値は$[ネ]+[ノ]\log [ハ]$である.ただし,[ヌ],[ハ]はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第1問
$[ア]$~$[エ]$にあてはまる数または式を解答用紙の所定欄に記入せよ.

(1)次の等式
\[ \log_3x - \frac{1}{\log_9x} = (-1)^x \]
を満たす正の整数$x$の値は$[ア]$である
(2)定数関数でない関数$f(x)$が
\[ f(x) = x^2 - \int_0^1 (f(t)+x)^2dt \]
を満たすとき,$f(x)=[イ]$である.
(3)$0<\theta \leqq 180^\circ$とする.数列$\{a_n\}$を次で定める.
\[ a_1 = \cos\theta, \quad a_{n+1}= a_n^2-1 \]
このとき,$a_4 = a_5$となる$\cos\theta$の最大値は$[ウ]$である.
(4)体積が$1$の正四面体の各辺の中点を頂点とする正八面体の体積は$[エ]$である.
早稲田大学 私立 早稲田大学 2012年 第3問
平面上に点$\mathrm{O},\ \mathrm{A}_1,\ \mathrm{A}_2,\ \mathrm{A}_3,\ \cdots,\ \mathrm{A}_{100}$がある.ただし,同じ点があってもよい.また,平面上の点$\mathrm{P}$に対して,
\[ f(P) = \sum_{i=1}^{100} |\overrightarrow{\mathrm{PA}}_i|^2 \]
とする.また,$f(\mathrm{P})$の最小値を$m$とし,平面上の点$\mathrm{C}$は$f(\mathrm{C})=m$を満たすとする.
このとき,次の設問に答えよ.

(1)$\overrightarrow{a_i}=\overrightarrow{\mathrm{OA}}_i (i=1,\ 2,\ 3,\ \cdots,\ 100)$とするとき,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a_i}$を用いて表せ.
(2)次の条件
\[ (*) \qquad \sum_{i=1}^{100} \left( \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_i \mathrm{A}_j}|^2 \right) = \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_1 \mathrm{A}_j}|^2 + \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_2 \mathrm{A}_j}|^2 + \cdots+ \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_{100} \mathrm{A}_j}|^2=4000 \]
が成立しているときの$m$の値を求めよ.
(3)(2)における条件$(*)$が成立しているとき,集合
\[ \left\{A_i \ \; \bigg| \ \; |\overrightarrow{\mathrm{CA}_i}| \geqq 2,\ 1 \leqq i \leqq 100,\ i \text{は整数} \right\} \]
の要素の個数の最大値を求めよ.
早稲田大学 私立 早稲田大学 2012年 第6問
$0 \leqq x \leqq 1$において,連立不等式
\[ \left\{
\begin{array}{l}
1-2x \leqq f(x) \\
x \leqq f(x) \\
f(x) \leqq 1
\end{array}
\right.
\]
を満たす$2$次関数$f(x)$で,定積分$\displaystyle\int_0^1 f(x)\, dx$の値を最小にする関数は,
\[ f(x) = [ネ]x^2 + [ノ]x + [ハ] \]
であり,その最小値は$\displaystyle\frac{[ヒ]}{[フ]}$となる.ただし,[フ]はできるだけ小さい自然数で答えることとする.
早稲田大学 私立 早稲田大学 2012年 第1問
$k$を正の定数とする.$2$つの放物線
\[ \begin{array}{ll}
y=x^2 & \cdots\cdots① \\
y=x^2+k & \cdots\cdots②
\end{array} \]
を考える.次の問に答えよ.

(1)放物線$②$上の点$\mathrm{P}$における接線$\ell$の方程式を求めよ.ただし,点$\mathrm{P}$の$x$座標を$p$とする.
(2)放物線$①$と接線$\ell$の共有点の$x$座標を求めよ.
(3)放物線$①$と接線$\ell$で囲まれた領域$A$の面積を求めよ.
(4)不等式$x \geqq p$の表す領域と領域$A$の共通部分の面積を求めよ.
早稲田大学 私立 早稲田大学 2012年 第2問
$a>0$,$a \neq 1$とするとき,次の問に答えよ.

(1)正の実数$x,y$に対して,$\displaystyle\log_a\frac{x+y}{2}$と$\displaystyle\frac{1}{2}(\log_ax+\log_ay)$の大小関係を調べよ.
(2)実数$x,y$に対して,$\log_a(x+y)=\log_ax+\log_ay$が成り立つとき,$\displaystyle\frac{1}{x}$および$\displaystyle\frac{1}{y}$のとり得る値の範囲を求めよ.
(3)$(2)$において,$k=2x+y$のとり得る値の範囲を求めよ.
(4)$\log_a(x+y)=\log_ax+\log_ay$を満たす整数$x,\ y$の組をすべて求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
$0 \leqq \theta \leqq \pi$は$\cos(2\theta) = \cos(3\theta)$を満たす.
次の問に答えよ.

(1)$\alpha - \beta = 2 \theta,\ \alpha+\beta = 3\theta$を満たす$\alpha,\ \beta$を$\theta$を用いて表せ.
(2)$\theta$の値を求めよ.
(3)$\cos\theta$の値を求めよ.
(4)$1$辺の長さが$1$の正五角形$\mathrm{ABCDE}$の外接円の半径を$R$とする.$R^2$の値を求めよ.
早稲田大学 私立 早稲田大学 2012年 第1問
次の小問の解答を解答用紙の所定欄に記入せよ.

(1)実数$a,\ b$が$0 \leqq a \leqq \pi$,$a<b$をみたすとき,
\[ I(a,b) = \int_a^b e^{-x}\sin x\;dx \]
とおく.ただし,$e$は自然対数の底とする.
\[ \lim_{b \to \infty} I(a,\ b) = 0 \]
が成立するように$a$を定めよ.

(2)行列$A=
\begin{pmatrix}
\;\;\; a & b \;\;\;\; \\
\;\;\; c & d \;\;\;\;
\end{pmatrix}
$は$ad-bc=2$および$a+d=3$をみたし,かつ,ある行列
\[ B =
\begin{pmatrix}
\;\;\; 1 & 1 \;\;\;\; \\
\;\;\; 0 & 1 \;\;\;\;
\end{pmatrix}
\begin{pmatrix}
\;\;\; \alpha & 0 \;\;\;\; \\
\;\;\; 0 & \beta \;\;\;\;
\end{pmatrix}
\begin{pmatrix}
\;\;\; 1 & 1 \;\;\;\; \\
\;\;\; 0 & 1 \;\;\;\;
\end{pmatrix}^{-1}
\]
に対して$AB=BA$をみたしている.ただし$\alpha \neq \beta$とする.このような行列$A$をすべて求めよ.

(3)$c$を正の実数として,漸化式
\[ a_n = \frac{{a_{n-1}}^2}{3^n} \quad (n \geqq 1), \qquad a_0 = c \]
で定義される数列$\{a_n\}$を考える.このとき$\displaystyle\lim_{n \to \infty} a_n = \infty$となるような$c$の範囲を求めよ.
(4)実数$t$が$1 \leqq t \leqq 2$の範囲で動くとき,$xy$平面の直線
\[ y=(3t^2-4)x-2t^3 \]
が通る範囲を$H$とする.$H$の内,直線$x=1$と$\displaystyle x=\frac{20}{9}$ではさまれる部分の面積を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。