タグ「不等号」の検索結果

307ページ目:全4604問中3061問~3070問を表示)
山梨大学 国立 山梨大学 2012年 第3問
円$C:x^2+y^2=1$と点$\mathrm{A}(x_0,\ 0)$があり,$0<x_0<1$とする.原点$\mathrm{O}$と円$C$上の点$\mathrm{B}$を通る直線$\ell_1$と線分$\mathrm{AB}$の垂直二等分線$\ell_2$の交点を$\mathrm{P}$とする.点$\mathrm{B}$が円$C$上を動くとき,点$\mathrm{P}$の軌跡の方程式を求めよ.また,その方程式が表す図形を下の座標平面上に図示せよ.
(図は省略)
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
金沢大学 国立 金沢大学 2012年 第4問
$n \geqq 3$とする.$1$個のサイコロを$n$回振る.この$n$回の試行のうちで$6$の目がちょうど$2$回,しかも続けて出る確率を$p_n$とする.次の問いに答えよ.

(1)$p_3,\ p_4$を求めよ.
(2)$p_n$を求め,
\[ p_{n+1}-\frac{5}{6}p_n=\left( \frac{1}{6} \right)^2 \left( \frac{5}{6} \right)^{n-1} \]
であることを示せ.
(3)$s_n=p_3+p_4+\cdots +p_n$として,$\displaystyle \lim_{n \to \infty}s_n$を求めよ.ただし,必要ならば,$|r|<1$のとき$\displaystyle \lim_{n \to \infty}nr^n=0$であることは使ってよい.
鳴門教育大学 国立 鳴門教育大学 2012年 第2問
正方形の各辺を$n$等分する点と,正方形の$4$つの頂点について,次の問いに答えよ.ただし,$n \geqq 2$とする.

(1)これらの点のうちの$3$個を頂点とする三角形の個数を求めよ.
(2)(1)のうち,直角二等辺三角形の個数を求めよ.
鳴門教育大学 国立 鳴門教育大学 2012年 第3問
赤玉$2$個,黒玉$4$個,白玉$N$個が入った袋から,$2$個の玉を同時に取り出す.このとき,次の問いに答えよ.ただし,$N \geqq 1$とする.

(1)取り出した$2$つの玉が同じ色である確率が$\displaystyle \frac{1}{3}$以下であるとする.このとき$N$の取りうる値を求めよ.
(2)取り出した$2$つの玉が赤玉と白玉である確率を$P(N)$とするとき,$P(N+1)-P(N)$を求めよ.
(3)取り出した$2$つの玉が赤玉と白玉である確率が最大になる$N$を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第4問
座標平面上の放物線$y=x^2$に点$\mathrm{P}(a,\ b)$(ただし,$b<a^2$)から異なる$2$本の接線を引き,放物線との接点をそれぞれ$\mathrm{Q}(q,\ q^2)$,$\mathrm{R}(r,\ r^2)$(ただし,$q<r$)とする.

(1)$2$本の接線の方程式を$a,\ b$を用いて表せ.
(2)$\angle \mathrm{QPR}=45^\circ$を満たす点$\mathrm{P}$の軌跡を求めて図示せよ.
東京海洋大学 国立 東京海洋大学 2012年 第1問
$3$次関数$f(x)=-x^3+3ax^2+b$($a,\ b$は実数の定数)について,次の問に答えよ.

(1)$a=1,\ b=3$のとき,$f(x)$の極値を求め,$y=f(x)$のグラフをかけ.
(2)$0 \leqq x \leqq 2$のとき$f(x) \leqq 4$となるための$a,\ b$の条件を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第2問
$a$を正の定数とする.放物線$C:y=(1-x)(x+a)$と$C$上の動点$\mathrm{P}(t,\ (1-t)(t+a))$について,次の問に答えよ.ただし,$0<t<1$とする.

(1)$x$軸に関して$\mathrm{P}$と対称な点を$\mathrm{Q}$,$xy$平面の原点を$\mathrm{O}$とし,放物線$C$と$y$軸および$2$つの線分$\mathrm{PQ}$,$\mathrm{OQ}$とで囲まれた図形の面積を$S$とするとき,$S$を$t$と$a$で表せ.
(2)$S$を最大にする$t$が$\displaystyle \frac{3}{4}<t<\frac{4}{5}$の範囲に存在することを示せ.
東京海洋大学 国立 東京海洋大学 2012年 第4問
$\displaystyle f(x)=x^3-\frac{7}{2}x^2+\frac{7}{2}x$として数列$\{a_n\}$を
\[ a_1=\frac{4}{3},\quad a_{n+1}=f(a_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,次の問に答えよ.

(1)$f(x)$は区間$\displaystyle \frac{4}{5} \leqq x \leqq \frac{4}{3}$で減少することを示せ.

(2)$\displaystyle \frac{4}{5} \leqq a_n \leqq \frac{4}{3} (n=1,\ 2,\ 3,\ \cdots)$を示せ.

(3)$\displaystyle \frac{1}{3} \left( \frac{9}{25} \right)^{n-1} \leqq |a_n-1| \leqq \frac{1}{3} \left( \frac{9}{16} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$を示せ.
京都教育大学 国立 京都教育大学 2012年 第5問
関数$f(x)=x^2-2$に対して,$y=f(x)$のグラフ上の点$(a,\ f(a))$における接線と$x$軸との交点の$x$座標を$g(a)$とおく.ただし,$a>0$とする.また$x_1=4$とし,$n=1,\ 2,\ 3,\ \cdots$に対して$x_{n+1}=g(x_n)$とおく.次の問に答えよ.

(1)$y=f(x)$のグラフ上の点$(4,\ 14)$におけるグラフの接線の方程式を求めよ.
(2)どのような自然数$n$に対しても$x_n>0$であることを数学的帰納法によって証明せよ.
(3)$x_3$を求めよ.
(4)どのような自然数$n$に対しても$x_{n+1} \geqq \sqrt{2}$であることを,相加平均と相乗平均の大小関係を使って証明せよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。