タグ「不等号」の検索結果

303ページ目:全4604問中3021問~3030問を表示)
山口大学 国立 山口大学 2012年 第1問
関数$f(x)=-x^2+15x-36$と$g(x)=\log_2(-x^2+15x-36)$について,次の問いに答えなさい.

(1)$f(x)>0$となる$x$の範囲を求めなさい.
(2)$\log_23=1.585$として,$g(x)$の最大値を小数で表しなさい.
(3)$f(g(x))>0$となる$x$の範囲を求めなさい.
山形大学 国立 山形大学 2012年 第3問
$n$を自然数とする.このとき,次の問に答えよ.

(1)$\displaystyle \lim_{n \to \infty}\frac{1}{n^3}\sum_{k=1}^n k^2$を求めよ.
(2)$0<r<1$とし,$S_n=1+2r+3r^2+\cdots +nr^{n-1}$とおく.

(i) $S_n-rS_n$を求めよ.
(ii) $\displaystyle \lim_{n \to \infty}\frac{1}{n}S_n$を求めよ.

(3)$a>0,\ b>0$に対して,不等式
\[ a+b-\sqrt{ab}<\sqrt{a^2+b^2}<a+b \]
が成り立つことを証明せよ.
(4)$\displaystyle \lim_{n \to \infty}\sum_{k=1}^n \sqrt{\displaystyle\frac{1}{3^{2(k-1)}}+\frac{k^4}{n^6}}$を求めよ.
宮城教育大学 国立 宮城教育大学 2012年 第4問
座標空間内の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 1)$,$\mathrm{B}(-1,\ 1,\ 2)$を含む平面を$\alpha$とする.また$t$を実数として,$\mathrm{P}(1,\ 0,\ -t)$とする.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta \ (0^\circ \leqq \theta \leqq 180^\circ)$を求めよ.
(2)点$\mathrm{P}$が平面$\alpha$上にあるとき,$t$の値を求めよ.
(3)点$\mathrm{P}$が平面$\alpha$上にないとき,点$\mathrm{P}$を通り平面$\alpha$に垂直な直線と平面$\alpha$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2012年 第5問
$I(a)$を
\[ I(a)=\int_{-1}^1 |x^2-a| \, dx \]
で定義する.このとき次の問いに答えよ.

(1)$a \leqq 0$のとき$I(a)$の最小値を求めよ.
(2)$a \geqq 1$のとき$I(a)$の最小値を求めよ.
(3)$0<a<1$のとき,$t=\sqrt{a}$とおいて$I(a)$を$t$で表し,$I(a)$の最小値を求めよ.
山形大学 国立 山形大学 2012年 第2問
2曲線$C_1:y=(x-a)^2 \ (a \geqq 0)$,$C_2:y=-x^2+b \ (b \geqq 0)$を考える.このとき,次の問に答えよ.

(1)$a=1,\ b=1$のとき,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
(2)$a=1,\ b=0$のとき,$C_1$と$C_2$の共通接線を求めよ.
(3)$C_1$と$C_2$が共有点を1つだけもつための条件を$a,\ b$で表せ.
(4)(3)の条件のもとでの$C_1$と$C_2$の共有点の軌跡を求めよ.
滋賀医科大学 国立 滋賀医科大学 2012年 第2問
$p$を定数とする.初項$a_1=1$の数列$\{a_n\} \ (n=1,\ 2,\ 3,\ \cdots)$を次のように定める.
\[ a_{n+1}-\frac{a_n}{2} \text{は整数,かつ} -\frac{1}{2}<a_{n+1}-p \leqq \frac{1}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$p=0$のとき,数列$\{a_n\}$の極限$\lim_{n \to \infty}a_n$を求めよ.
(2)$p=1$のとき,$b_n=a_{2n} \ (n=1,\ 2,\ 3,\ \cdots)$で定まる数列$\{b_n\}$の極限$\lim_{n \to \infty}b_n$を求めよ.
(3)$p=1$のとき,数列$\{a_n\}$は収束するかどうか,理由を付けて答えよ.
山形大学 国立 山形大学 2012年 第4問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
滋賀医科大学 国立 滋賀医科大学 2012年 第4問
赤色,青色,黄色の箱を各一箱,赤色,青色,黄色の球を各一個用意して,各球を球と同じ色の箱に入れる.この状態からはじめて,次の操作を$n$回($n \geqq 1$)行う. \\
(操作) \ 三つの箱から二つの箱を任意に選び,その二つの箱の中の球を交換する.

(1)赤球の球が赤色の箱に入っている確率を求めよ.
(2)箱とその中の球の色が一致している箱の個数の期待値を求めよ.
(3)赤色の球が赤色の箱に入っている事象と,青色の球が青色の箱に入っている事象は,互いに独立かどうか,理由を付けて答えよ.
福井大学 国立 福井大学 2012年 第4問
$xy$平面上に,曲線$C_1:x=t-\sin t,\ y=1-\cos t \ (0 \leqq t \leqq 2\pi)$がある.$0<t<2\pi$をみたす$t$に対し,$C_1$上の点$\mathrm{P}_1(t-\sin t,\ 1-\cos t)$における$C_1$の法線を$m$とおき,$x$軸と$m$の交点を$\mathrm{M}$とし,$\mathrm{M}$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点になるように点$\mathrm{P}_2$をとる.このとき,以下の問いに答えよ.
(図は省略)

(1)直線$m$の方程式を求めよ.また,$\mathrm{M},\ \mathrm{P}_2$の座標を$t$を用いて表せ.さらに,$\mathrm{P}_2$の$x$座標を$f(t)$とおくと,関数$f(t)$は,$0<t<2\pi$で増加することを示せ.
(2)$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$\mathrm{P}_2$の軌跡を$C_2$とするとき,$x$軸と曲線$C_2$で囲まれた図形の面積を求めよ.ただし,$t=0,\ 2\pi$に対しては,点$\mathrm{P}_2$をそれぞれ点$(0,\ 0)$,点$(2\pi,\ 0)$にとるものとする.
長崎大学 国立 長崎大学 2012年 第5問
関数$f(x)=xe^{-x^2}$について,次の問いに答えよ.

(1)$y=f(x)$の増減,極値,グラフの凹凸,および変曲点を調べて,そのグラフをかけ.ただし,$\displaystyle \lim_{x \to \infty}xe^{-x^2}=0,\ \lim_{x \to -\infty}xe^{-x^2}=0$を用いてよい.
(2)$y=f(x)$の最大値と最小値,およびそのときの$x$の値を求めよ.
(3)$t>0$とする.曲線$y=f(x)$,$x$軸,および直線$x=t$で囲まれた部分の面積$S(t)$を求めよ.
(4)(3)で求めた$S(t)$について,$\displaystyle \lim_{t \to \infty}S(t)$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。