タグ「不等号」の検索結果

298ページ目:全4604問中2971問~2980問を表示)
島根大学 国立 島根大学 2012年 第3問
$x>0$に対して,$\displaystyle f_n(x)=x^{\frac{1}{n}}\log x \ (n=1,\ 2,\ 3,\ \cdots)$とおく.このとき,次の問いに答えよ.

(1)関数$f_n(x)$の極値と,極値を与える$x$の値を求めよ.
(2)(1)で求めた$x$の値を$a_n$とするとき,$x \geqq a_n$の範囲における曲線$y=f_n(x)$と直線$x=a_n$および$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)極限$\displaystyle \lim_{n \to \infty}S_n$を求めよ.ただし,必要があれば,$\displaystyle \lim_{n \to \infty}ne^{-n}=0$を用いてもよい.
島根大学 国立 島根大学 2012年 第4問
原点を中心とする半径1の円上の異なる3点P$_0(1,\ 0)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$を$y_1>0$かつ$\triangle$P$_0$P$_1$P$_2$が正三角形になるようにとる.このとき,次の問いに答えよ.

(1)P$_1$の座標$(x_1,\ y_1)$とP$_2$の座標$(x_2,\ y_2)$を求めよ.
(2)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$と$A \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$A$を求めよ.
(3)$B \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)$と$B \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$B$を求めよ.
(4)(2),(3)で求めた行列$A,\ B$と正の整数$n$に対して,$(AB+BABA)^n$を求めよ.
島根大学 国立 島根大学 2012年 第2問
$x>0$に対して,$\displaystyle f_n(x)=x^{\frac{1}{n}}\log x \ (n=1,\ 2,\ 3,\ \cdots)$とおく.このとき,次の問いに答えよ.

(1)関数$f_n(x)$の極値と,極値を与える$x$の値を求めよ.
(2)(1)で求めた$x$の値を$a_n$とするとき,$x \geqq a_n$の範囲における曲線$y=f_n(x)$と直線$x=a_n$および$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)極限$\displaystyle \lim_{n \to \infty}S_n$を求めよ.ただし,必要があれば,$\displaystyle \lim_{n \to \infty}ne^{-n}=0$を用いてもよい.
島根大学 国立 島根大学 2012年 第3問
$t$を実数とし,$\displaystyle f(t)=\int_0^2 |x^2-2x+1-t^2| \, dt$とおく.このとき,次の問いに答えよ.

(1)$f(0)$と$f(1)$の値を求めよ.
(2)$0<t<1$のとき,$f(t)$を求めよ.
(3)$t$が$0 \leqq t \leqq 1$の範囲にあるとき,$f(t)$の最小値を求めよ.
島根大学 国立 島根大学 2012年 第3問
関数
\[ f(x)=\left( x+\frac{1}{2} \right) \log \left( 1+\frac{1}{x} \right) \quad (x>0) \]
について,次の問いに答えよ.

(1)$f^{\prime\prime}(x)$を求めよ.
(2)極限$\displaystyle \lim_{x \to \infty}f^{\prime}(x)$の値を求め,さらに$f^\prime(x)<0$であることを証明せよ.
(3)関数$y=f(x)$の凹凸と漸近線を調べ,そのグラフの概形をかけ.
宇都宮大学 国立 宇都宮大学 2012年 第1問
$1$から$n$までの番号をつけた$n$枚のカードがある.次の問いに答えよ.ただし,$n$は自然数で$n \geqq 5$とする.

(1)$n=5$とする.$5$枚のカードから同時に$2$枚を取り出すとき,取り出した番号の和の期待値を求めよ.
(2)$n$を偶数とする.$n$枚のカードから同時に$k$枚を取り出すとき,取り出した番号の積が偶数である確率を$n$と$k$を用いて表せ.ただし,$\displaystyle 2 \leqq k \leqq \frac{n}{2}$とする.
(3)$n$を偶数とする.$n$枚のカードから同時に$3$枚を取り出すとき,取り出した番号の和が偶数である確率を求めよ.
島根大学 国立 島根大学 2012年 第3問
原点を中心とする半径1の円上の異なる3点P$_0(1,\ 0)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$を$y_1>0$かつ$\triangle$P$_0$P$_1$P$_2$が正三角形になるようにとる.このとき,次の問いに答えよ.

(1)P$_1$の座標$(x_1,\ y_1)$とP$_2$の座標$(x_2,\ y_2)$を求めよ.
(2)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$と$A \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$A$を求めよ.
(3)$B \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)$と$B \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$B$を求めよ.
(4)(2),(3)で求めた行列$A,\ B$と正の整数$n$に対して,$(AB+BABA)^n$を求めよ.
宇都宮大学 国立 宇都宮大学 2012年 第3問
1辺の長さが1の正三角形ABCと,線分BCを$1:2$に内分する点Dが与えられている.実数$x \ (0 \leqq x \leqq 1)$に対し,線分AB上の点Pと線分AC上の点Qを$\text{AP}=\text{CQ}=x$となるように定めるとき,次の問いに答えよ.

(1)線分ADの長さを求めよ.
(2)三角形DPQの面積$S$を$x$の式で表せ.
(3)(2)の$S$について,$S$の最大値と最小値を求めよ.
(4)(2)の$S$の値が$\displaystyle \frac{\sqrt{3}}{8}$となるとき,$x$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2012年 第4問
関数$f(x)=x^3-3x^2+2$について,次の問いに答えよ.

(1)$y=f(x)$の増減を調べ,極値を求めよ.また,グラフの概形をかけ.
(2)$\displaystyle -\frac{a}{2} \leqq x \leqq a$における$f(x)$の最大値$M$を求めよ.ただし,$a$は定数で$a>0$とする.
(3)$\displaystyle -\frac{a}{2} \leqq x \leqq a$における$f(x)$の最小値$m$を求めよ.ただし,$a$は定数で$a>0$とする.
宇都宮大学 国立 宇都宮大学 2012年 第5問
$A^2=O$を満たす行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$について,次の問いに答えよ.ただし,$O$は零行列である.

(1)$c \neq 0$のとき,$b$を$a$と$c$を用いて表せ.
(2)$c=0$のとき,$a$と$d$の値を求めよ.
(3)$c=0$のとき,$X_1=E,\ X_{n+1}=AX_n+B \ (n=1,\ 2,\ \cdots)$と定める.$n \geqq 3$のとき
\[ X_1+X_2+\cdots +X_n \]
を求めよ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\ B=\left( \begin{array}{cc}
1 & 1 \\
1 & 1
\end{array} \right)$である.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。