タグ「不等号」の検索結果

297ページ目:全4604問中2961問~2970問を表示)
徳島大学 国立 徳島大学 2012年 第2問
$f(x)=\sqrt{x}e^{-x} (0 \leqq x \leqq 1)$とする.

(1)関数$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
徳島大学 国立 徳島大学 2012年 第3問
次の問いに答えよ.

(1)実数$x,\ y$が$x+y=5,\ x^3+y^3=50$を満たすとき,$xy,\ x^2+y^2,\ x^5+y^5$の値を求めよ.
(2)$x>1$とする.不等式$\displaystyle \log_2 \frac{x}{4^3}+\log_x 4^4<0$を解け.
徳島大学 国立 徳島大学 2012年 第4問
$3$個のサイコロを同時に投げ,出た目の数を大きさの順に$a,\ b,\ c (a \leqq b \leqq c)$とする.

(1)$a<b<c$となる確率を求めよ.
(2)$a,\ b,\ c$のうち少なくとも二つが$3$となる確率を求めよ.
(3)$b=3$かつ$2$次方程式$ax^2+2bx+c=0$が実数解をもつ確率を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
$\ell_1,\ \ell_2,\ \ell_3$を座標空間の点$\mathrm{O}$を始点とする$3$つの相異なる半直線とする.$\ell_1$と$\ell_2$及び$\ell_1$と$\ell_3$が$\mathrm{O}$においてなす角は$\displaystyle \frac{\pi}{3}$であるとし,$\ell_2$と$\ell_3$が$\mathrm{O}$においてなす角を$\displaystyle \theta \ \left( 0<\theta \leqq \frac{2\pi}{3} \right)$とする.$\mathrm{O}$とは異なる$\ell_1,\ \ell_2,\ \ell_3$上の$3$点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$を頂点とする正三角形が存在するような$\cos \theta$の範囲を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第3問
$\ell_1,\ \ell_2,\ \ell_3$を座標空間の点Oを始点とする3つの相異なる半直線とする.$\ell_1$と$\ell_2$及び$\ell_1$と$\ell_3$がOにおいてなす角は$\displaystyle \frac{\pi}{3}$であるとし,$\ell_2$と$\ell_3$がOにおいてなす角を$\displaystyle \theta \ \left( 0<\theta \leqq \frac{2\pi}{3} \right)$とする.$x,\ y$を正数とし,$\ell_1,\ \ell_2,\ \ell_3$上に点P$_1$,P$_2$,P$_3$をそれぞれ,$\text{OP}_1=1,\ \text{OP}_2=x,\ \text{OP}_3=y$となるようにとる.$\triangle$P$_1$P$_2$P$_3$が正三角形となる$x,\ y$が存在するような$\cos \theta$の範囲を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
$\ell_1,\ \ell_2,\ \ell_3$を座標空間の点Oを始点とする3つの相異なる半直線とする.$\ell_1$と$\ell_2$及び$\ell_1$と$\ell_3$がOにおいてなす角は$\displaystyle \frac{\pi}{3}$であるとし,$\ell_2$と$\ell_3$がOにおいてなす角を$\displaystyle \theta \ \left( 0<\theta \leqq \frac{2\pi}{3} \right)$とする.Oとは異なる$\ell_1,\ \ell_2,\ \ell_3$上の3点P$_1$,P$_2$,P$_3$を頂点とする正三角形が存在するような$\cos \theta$の範囲を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第3問
次の問いに答えよ.

(1)$x>0$で
\[ f(x)+\int_1^x \frac{f(t)}{t} \, dt =3x^2-2x \]
を満たす多項式$f(x)$を求めよ.
(2)$x>0$で(1)で求めた$f(x)$と$g(x)=1+3 \log x$を考える.このとき関数$f(x)$と$g(x)$のグラフをかけ.
(3)連立不等式
\[ \left\{
\begin{array}{l}
x>0 \\
0 \leqq y \leqq 1 \\
g(x) \leqq y \leqq f(x)
\end{array}
\right. \]
を満たす領域の面積を求めよ.
(4)(3)で求めた領域を$x$軸のまわりに回転してできる立体の体積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
半径2の円板が$x$軸上を正の方向に滑らずに回転するとき,円板上の点Pの描く曲線$C$を考える.円板の中心の最初の位置を$(0,\ 2)$,点Pの最初の位置を$(0,\ 1)$とする.

(1)円板がその中心のまわりに回転した角を$\theta$とするとき,Pの座標は
\[ (2\theta-\sin \theta,\ 2-\cos \theta) \]
で与えられることを示せ.
(2)点P$(2\theta-\sin \theta,\ 2-\cos \theta) \ (0<\theta<2\pi)$における曲線$C$の法線と$x$軸との交点をQとする.線分PQの長さが最大となるような点Pを求めよ.ここで,Pにおいて接線に直交する直線を法線という.
(3)曲線$C$と$x$軸,2直線$x=0,\ x=4\pi$で囲まれた図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
$a,\ b$を実数とし,$a<b$とする.関数$f(x)$は閉区間$[a,\ b]$で連続,開区間$(a,\ b)$で少なくとも2回まで微分可能で,$f^{\prime\prime}(x) \geqq 0$とする.以下の問いに答えよ.

(1)$a<c<b$とする.$y=g(x)$を点$(c,\ f(c))$における$f(x)$の接線とする.$a \leqq x \leqq b$のとき$g(x) \leqq f(x)$を示せ.
(2)$y=h(x)$を,$(a,\ f(a))$,$(b,\ f(b))$の2点を通る直線とする.$a \leqq x \leqq b$のとき$f(x) \leqq h(x)$を示せ.
(3)$a<c<b$とする.
\[ \frac{1}{2}(b-a) \left( f^\prime(c)(a+b-2c)+2f(c) \right) \leqq \int_a^b f(x) \, dx \leqq \frac{1}{2}(f(a)+f(b))(b-a) \]
を示せ.
(4)\[ \frac{\pi}{2}e^{-\frac{1}{\sqrt{2}}} \leqq \int_0^{\frac{\pi}{2}} e^{-\cos x} \, dx \leqq \frac{\pi}{4} \left( 1+\frac{1}{e} \right) \]
を示せ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第4問
以下では,実数を成分にもつ行列を考える.

(1)$A=\left( \begin{array}{cc}
a & b \\
0 & d
\end{array} \right)$とする.

(i) $a>0,\ d \geqq 0$または$a \geqq 0,\ d>0$のとき,$X^2=A$を満たす行列$X$を1つ求めよ.
(ii) $a<0$または$d<0$のとき,$X^2=A$を満たす行列$X$が存在するための必要十分条件を$a,\ b,\ d$を用いて表せ.また,この条件が成り立つとき,$X^2=A$を満たす行列$X$を1つ求めよ.
(iii) $a=d=0,\ b \neq 0$のとき,$X^2=A$を満たす行列$X$は存在しないことを示せ.

(2)$B=\left( \begin{array}{cc}
p & q \\
r & s
\end{array} \right),\ B^2=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とする.

(i) $p+s=0,\ ps-qr=0$となることを示せ.
(ii) $B \neq \left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$のとき,$X^2=B$を満たす行列$X$は存在しないことを示せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。