タグ「不等号」の検索結果

28ページ目:全4604問中271問~280問を表示)
山梨大学 国立 山梨大学 2016年 第4問
$y=e^{-\pi x} \sin (\pi x)$で定められた曲線を$C$とする.

(1)$0 \leqq x \leqq 2$の範囲で$C$の概形をかけ.ただし,凹凸を調べる必要はない.
(2)$n$を自然数とする.$C$の$n-1 \leqq x \leqq n$の部分と$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)$(2)$の$S_n$について,$\displaystyle \sum_{n=1}^\infty S_n$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第5問
座標平面上の曲線$\displaystyle C:y=\sin \pi x \left( 0<x<\frac{1}{2} \right)$の上に点$\mathrm{P}(a,\ \sin \pi a)$をとる.点$\mathrm{P}$における$C$の接線と法線をそれぞれ$\ell$,$m$とする.$\ell$と$y$軸の交点を$\mathrm{Q}(0,\ q)$,$m$と$x$軸の交点を$\mathrm{R}(r,\ 0)$とし,点$\mathrm{P}$から$y$軸に下ろした垂線の足を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求め,$q$を$a$を用いて表せ.
(2)法線$m$の方程式を求め,$r$を$a$を用いて表せ.
(3)曲線$C$,直線$m$,および$x$軸によって囲まれる部分の面積を$S(a)$とする.$S(a)$を$a$を用いて表せ.
(4)$\triangle \mathrm{PQH}$の面積を$T(a)$とする.極限値$\displaystyle \lim_{a \to 0} \frac{S(a)}{T(a)}$を求めよ.
山梨大学 国立 山梨大学 2016年 第3問
$xy$平面上に$5$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ 0)$,$\displaystyle \mathrm{P} \left( \frac{1}{2},\ t \right)$ \ $\displaystyle \left( \frac{1}{2} \leqq t<1 \right)$,$\displaystyle \mathrm{Q}(\alpha,\ 0)$ \ $\displaystyle \left( \frac{1}{2} \leqq \alpha \leqq 1 \right)$がある.$\mathrm{A}$,$\mathrm{P}$を通る直線を$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\triangle \mathrm{APB}$において,$\angle \mathrm{APB} \leqq {90}^\circ$を示せ.
(3)$\ell$に垂直で$\mathrm{Q}$を通る直線を$m$とする.$\ell$と$m$の交点を$\mathrm{R}$とするとき,$\mathrm{R}$の$x$座標を$\alpha$と$t$を用いた式で表せ.
(4)$(3)$の$\mathrm{R}$が線分$\mathrm{PA}$上にあるための$\alpha$の範囲を$t$を用いた式で表せ.
奈良教育大学 国立 奈良教育大学 2016年 第1問
以下の問に答えよ.

(1)次の和を求めよ.
\[ S=2+4x+6x^2+8x^3+\cdots +2nx^{n-1} \]
(2)$0<a<1$のとき,$\log_3 a$と$\log_a 3$の大小を比較せよ.
長岡技術科学大学 国立 長岡技術科学大学 2016年 第1問
放物線$y=x^2$上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$がある.ただし,$a>b$とする.直線$\mathrm{AB}$と放物線とで囲まれる部分の面積を$S$とする.下の問いに答えなさい.

(1)$a=b+1$とするとき,$S$を求めなさい.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$が$\displaystyle S=\frac{1}{6}$という条件を満たしながら動くとき,線分$\mathrm{AB}$の中点の軌跡を求めなさい.
長岡技術科学大学 国立 長岡技術科学大学 2016年 第4問
自然数$m,\ n$が$m \geqq n$を満たすとする.$\mathrm{a}$という文字が$m$個,$\mathrm{b}$という文字が$n$個あり,それらの合計$m+n$個の文字を$1$列に並べるとき,下の問いに答えなさい.

(1)並べ方は全部で何通りあるかを求めなさい.
(2)$\mathrm{bb}$という文字列を含まない並べ方は全部で何通りあるかを求めなさい.
(3)$\mathrm{aab}$という文字列を含まない並べ方は全部で何通りあるかを求めなさい.
愛媛大学 国立 愛媛大学 2016年 第4問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第2問
$\displaystyle f(x)=\frac{x}{2}$,$g(x)=x$,$\displaystyle h(x)=\frac{x+1}{2}$とおく.$x_0=1$とし,$2$枚の硬貨を繰り返して投げ,$n$回目の事象により$x_n$を次のように定める.
\[ x_n=\left\{ \begin{array}{lll}
f(x_{n-1}) & & (2 \text{枚とも表のとき}) \\
g(x_{n-1}) & & (\text{$1$枚が表,$1$枚が裏のとき}) \phantom{\frac{[ ]}{[ ]}} \\
h(x_{n-1}) & & (\text{$2$枚とも裏のとき})
\end{array} \right. \]
また,$p_n,\ q_n,\ r_n$をそれぞれ$\displaystyle 0<x_n \leqq \frac{1}{3}$である確率,$\displaystyle \frac{1}{3}<x_n \leqq \frac{2}{3}$である確率,$\displaystyle \frac{2}{3}<x_n \leqq 1$である確率とする.

(1)すべての自然数$n$に対して$0<x_n \leqq 1$を示せ.
(2)$p_1,\ q_1,\ r_1$を求めよ.
(3)$p_n,\ q_n,\ r_n$を$p_{n-1},\ q_{n-1},\ r_{n-1}$を用いて表せ.
(4)$p_n-r_n$を求めよ.
(5)$p_n$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第3問
$z_0$を虚数単位$i$と異なる複素数とする.複素数$z_n$を
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.

(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。