タグ「不等号」の検索結果

278ページ目:全4604問中2771問~2780問を表示)
千葉大学 国立 千葉大学 2012年 第5問
放物線$y=x^2$上の点$(a,\ a^2)$における接線を$\ell_a$とする.

(1)直線$\ell_a$が不等式
\[ y> -x^2+2x-5 \]
の表す領域に含まれるような$a$の範囲を求めよ.
(2)$a$が(1)で求めた範囲を動くとき,直線$\ell_a$が通らない点$(x,\ y)$全体の領域$D$を図示せよ.
(3)連立不等式
\[ \left\{
\begin{array}{l}
(y-x^2)(y+x^2-2x+5) \leqq 0 \\
y(y+5) \leqq 0
\end{array}
\right. \]
の表す領域を$E$とする.$D$と$E$の共通部分の面積を求めよ.
東京大学 国立 東京大学 2012年 第2問
実数$t$は$0<t<1$を満たすとし,座標平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(t,\ 0)$を考える.また線分$\mathrm{AB}$上の点$\mathrm{D}$を$\angle \mathrm{ACO}=\angle \mathrm{BCD}$となるように定める.$t$を動かしたときの三角形$\mathrm{ACD}$の面積の最大値を求めよ.
東京大学 国立 東京大学 2012年 第4問
座標平面上の放物線$C$を$y=x^2+1$で定める.$s,\ t$は実数とし$t<0$を満たすとする.点$(s,\ t)$から放物線$C$へ引いた接線を$\ell_1,\ \ell_2$とする.

(1)$\ell_1,\ \ell_2$の方程式を求めよ.
(2)$a$を正の実数とする.放物線$C$と直線$\ell_1,\ \ell_2$で囲まれる領域の面積が$a$となる$(s,\ t)$を全て求めよ.
静岡大学 国立 静岡大学 2012年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) \ (a<0<b)$における接線の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{C}$の座標を$a,\ b$を用いて表せ.
(2)$\triangle \mathrm{ABC}$が正三角形のとき,$a,\ b$の値を求めよ.
(3)$\triangle \mathrm{ABC}$が$\angle \mathrm{A}$を直角とする直角二等辺三角形のとき,$a,\ b$の値を求めよ.
静岡大学 国立 静岡大学 2012年 第2問
四面体ABCDがある.$\triangle$ABC,$\triangle$ABDの重心をそれぞれE,Fとおき,線分DEと線分CFの交点をGとする.このとき,次の問いに答えよ.

(1)線分DEと線分CFが交わる理由を述べよ.
(2)Oを空間内の定点とし,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}},\ \overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とおく.このとき,$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(3)A$(0,\ 0,\ 4)$,B$(-1,\ 3,\ 0)$,C$(3,\ 0,\ 0)$,D$(-2,\ -3,\ 0)$のとき,$\angle \text{AGB}$,$\angle \text{BGC}$,$\angle \text{CGA}$の大小関係を不等号を用いて表せ.
静岡大学 国立 静岡大学 2012年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) \ (a<0<b)$における接線の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{C}$の座標を$a,\ b$を用いて表せ.
(2)$\triangle \mathrm{ABC}$が正三角形のとき,$a,\ b$の値を求めよ.またそのとき,線分$\mathrm{AC}$,$\mathrm{BC}$と放物線$y=x^2$で囲まれた図形の面積を求めよ.
(3)$\triangle \mathrm{ABC}$が$\angle \mathrm{A}$を直角とする直角二等辺三角形のとき,$a,\ b$の値を求めよ.
静岡大学 国立 静岡大学 2012年 第2問
四面体ABCDがある.$\triangle$ABC,$\triangle$ABDの重心をそれぞれE,Fとおき,線分DEと線分CFの交点をGとする.このとき,次の問いに答えよ.

(1)線分DEと線分CFが交わる理由を述べよ.
(2)Oを空間内の定点とし,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}},\ \overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とおく.このとき,$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(3)A$(0,\ 0,\ 4)$,B$(-1,\ 3,\ 0)$,C$(3,\ 0,\ 0)$,D$(-2,\ -3,\ 0)$のとき,$\angle \text{AGB},\ \angle \text{BGC},\ \angle \text{CGA}$の大小関係を不等号を用いて表せ.
静岡大学 国立 静岡大学 2012年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) (a<0<b)$における接線の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{C}$の座標を$a,\ b$を用いて表せ.
(2)$\triangle \mathrm{ABC}$が正三角形のとき,$a,\ b$の値を求めよ.
(3)$\triangle \mathrm{ABC}$が直角二等辺三角形となるような$a,\ b$の組をすべて求めよ.
東北大学 国立 東北大学 2012年 第4問
$0 \leqq x \leqq \pi$に対して,関数$f(x)$を
\[ f(x) = \int_0^{\frac{\pi}{2}} \frac{\cos |t-x|}{1+\sin |t-x|} \, dt\]
と定める.$f(x)$の$0 \leqq x \leqq \pi$における最大値と最小値を求めよ.
信州大学 国立 信州大学 2012年 第2問
$\log_x y + 2\log_y x \leqq 3$を満たす点$(x,\ y)$の存在する領域を図示せよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。