タグ「不等号」の検索結果

270ページ目:全4604問中2691問~2700問を表示)
札幌医科大学 公立 札幌医科大学 2013年 第3問
曲線$7x^2+2 \sqrt{3}xy+9y^2=30$上の点$(x,\ y)$に対して,変換
\[ \left\{ \begin{array}{l}
X=x \cos \theta-y \sin \theta \\
Y=x \sin \theta+y \cos \theta \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
を考える(ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする).このとき$X,\ Y$のみたす式は
\[ a(\theta)X^2+b(\theta)XY+c(\theta)Y^2=30 \]
となる.ただし,$a(\theta)$,$b(\theta)$,$c(\theta)$は$\theta$のみにより決まる定数である.いま,$b(\theta)=0$をみたす$\theta$を$\theta_1$とする.

(1)$\theta_1$を求めよ.
(2)$a(\theta_1)X^2+c(\theta_1)Y^2=30$で囲まれた図形の面積を求めよ.
(3)$a(\theta_1)X^2+c(\theta_1)Y^2=30$に内接する平行四辺形の面積の最大値を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第4問
関数$f(x)=x \cos x-\sin x$を区間$I:\pi \leqq x \leqq 3\pi$で考える.

(1)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(2)区間$I$における関数$f(x)$の最大値と最小値を求めよ.区間$I$において$f(x)=0$をみたす$2$点を$x=s,\ t$とする.ただし$s<t$とする.
(3)$s$と$t$は,それぞれ次の$4$つの区間

$\displaystyle \pi \leqq x \leqq \frac{3}{2}\pi,\quad \frac{3}{2}\pi \leqq x \leqq 2\pi,$

$\displaystyle 2\pi \leqq x \leqq \frac{5}{2}\pi,\quad \frac{5}{2}\pi \leqq x \leqq 3\pi$

のどれに入るか.
(4)$x$軸の$4\pi-t \leqq x \leqq 2\pi$の部分,直線$x=4\pi-t$,直線$x=2\pi$および$y=f(x)$で囲まれた図形の面積を$S$とする.また,$x$軸の$2\pi \leqq x \leqq t$の部分,$x=2\pi$および$y=f(x)$で囲まれた図形の面積を$T$とする.このとき$S$と$T$の大小を比較せよ.
鳥取環境大学 公立 鳥取環境大学 2013年 第1問
不等式に関する以下の問に答えよ.

(1)座標平面上で,不等式$x^2+6x+y^2+2y+6 \leqq 0$と$y \geqq -2x-3$の両方を満たす点$(x,\ y)$の存在する領域を図示せよ.
(2)点$(x,\ y)$が$(1)$の領域を動くとき,$x$と$y$は不等式$x^2+y^2 \leqq 4$を満たすことを証明せよ.
鳥取環境大学 公立 鳥取環境大学 2013年 第4問
次のようなゲームについて以下の問に答えよ.

カードが$5$枚伏せてある.$1$回の試行ではカードをかき混ぜて$1$枚をでたらめに選んでめくり,出たカードの番号に対応する賞品がもらえる.$5$種類の賞品をすべてあつめるのが目的である.ただし,めくったカードはその都度戻すものとする.
ここで,すでに$k$種類の賞品を持っている状況で試行を$1$回行ってまだ持っていない賞品がもらえる確率を$P_k$で表すとする($0 \leqq k \leqq 4$).$P_0=1$である.

(1)$P_1$の値を求めよ.
(2)$P_k$を$k$を用いた式で表せ.
(3)$5$回の試行で賞品が全種類そろう確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(4)試行を$5$回行った時点で得られている賞品が$4$種類だけである確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(5)ある事象が起きる確率が$x$であるとき,その事象が起きるまで繰り返し試行を行うならば,必要な試行回数の期待値は$\displaystyle \frac{1}{x}$だと知られている.ここで,賞品を$k$種類($0 \leqq k \leqq 4$)持っている状況から始めてまだ持っていない賞品のいずれか$1$つが得られるまでの試行回数の期待値を$Q_k$で表すとする($0 \leqq k \leqq 4$).$Q_k$を$P_k$を用いた式で表せ.さらに$k$を用いた($P_k$を使わない)形で式を表せ.
(6)賞品を$n$種類持っている状況から始めて賞品が$m$種類そろうまでの試行回数の期待値は$\displaystyle \sum_{k=n}^{m-1} Q_k$となる.ただし,$0 \leqq n<m \leqq 4$である.賞品を$1$つも持っていない状況から$4$種類そろうまでと,$4$種類そろった状況から最後の$1$種類が出るまでと,試行回数の期待値はどちらが大きいか.計算して求めよ.
鳥取環境大学 公立 鳥取環境大学 2013年 第5問
以下の問に答えよ.

(1)次の$(ⅰ)$~$(ⅲ)$の文章が命題であれば真偽を答えよ.また真の場合は理由を示し,偽の場合は反例を示せ.命題でない場合は「命題でない」と答えよ.

(i) $x$が整数ならば$x^2 \geqq 0$である.
(ii) $n$が$2$以上の整数であるとき$2^n-1$はすべて素数である.
(iii) 数学は美しい.

(2)次の$(ⅰ)$~$\tokeigo$の$[ ]$の中に,必要条件であるが十分条件でない,十分条件であるが必要条件でない,必要十分条件である,必要条件でも十分条件でもない,のいずれが当てはまるか答えよ.

(i) $x$が偶数であることは,$x$が整数であるための$[ ]$.
(ii) 三角形$\mathrm{ABC}$のどれかひとつの辺の長さの$2$乗がのこりの$2$辺の長さの$2$乗の和に等しいことは,三角形$\mathrm{ABC}$が直角三角形であるための$[ ]$.
(iii) $x,\ y$がともに有理数のとき,$y>2x^2$であることは,$y>x^2-2x-2$であるための$[ ]$.
\mon[$\tokeishi$] 四角形$\mathrm{ABCD}$の内角が$4$つとも$90^\circ$であることは,四角形$\mathrm{ABCD}$が正方形であるための$[ ]$.
\mon[$\tokeigo$] 四角形$\mathrm{ABCD}$の辺の長さがすべて等しいことは,四角形$\mathrm{ABCD}$が長方形であるための$[ ]$.

(3)次の命題(ア),(イ)の逆,裏,対偶をそれぞれ書け.また,元の命題,逆,裏,対偶の真偽をそれぞれ答えよ.

\mon[(ア)] $\sqrt{n}$が有理数ならば$n$は有理数である.
\mon[(イ)] $n$を整数とする.$n$が奇数ならば$n^2$は奇数である.
和歌山県立医科大学 公立 和歌山県立医科大学 2013年 第1問
関数$f(x)$を,
\[ f(x)=\left\{ \begin{array}{ll}
2x+1 & \displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right) \\
2x+\sin x & \displaystyle \left( x \geqq \frac{\pi}{2} \right) \phantom{\frac{[ア]}{2}}
\end{array} \right. \]
と定め,関数$g(x)$を,$g(x)=f(2x)-2f(x) (0 \leqq x \leqq 2\pi)$と定める.

(1)関数$g(x)$の最大値と最小値,およびそれらをとる$x$の値を求めよ.
(2)曲線$C:y=g(x)$の概形を描け.ただし,変曲点に留意しなくてよい.
(3)区間$[0,\ 2\pi]$で,曲線$C$と$x$軸の間にある部分を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2013年 第2問
実数$x,\ y$に対して,$x \vee y$は$x$と$y$の小さくない方を表し,$x \wedge y$は$x$と$y$の大きくない方を表すとする.

(1)$(1 \vee 2) \wedge (3 \vee 4)$および$(1 \wedge 3) \vee (2 \wedge 4)$を求めよ.
(2)実数$a,\ b,\ c,\ d$に対して,
\[ (a \vee b) \wedge (c \vee d) \geqq (a \wedge c) \vee (b \wedge d) \]
が成り立つことを示せ.
(3)実数$a,\ b,\ c,\ d$に対して,
\[ (a \vee b) \wedge (c \vee d)=(a \wedge c) \vee (b \wedge d) \]
が成り立つか.成り立つ場合は証明し,成り立たない場合は反例をあげよ.
富山県立大学 公立 富山県立大学 2013年 第1問
$a$は定数とする.$xy$平面上で連立不等式$y+ax-5 \leqq 0$,$0 \leqq x \leqq 2$,$0 \leqq y \leqq 3$が表す領域の面積を$S$とする.このとき,次の問いに答えよ.

(1)$a=2$のとき,$S$の値を求めよ.
(2)$a=3$のとき,$S$の値を求めよ.
(3)$a \geqq 1$のとき,$S$を$a$を用いて表せ.
富山県立大学 公立 富山県立大学 2013年 第2問
$2$から$21$までの整数がそれぞれ$1$つずつ書かれた$20$個のボールが,箱の中に入っている.まず,箱の中の$20$個のボールから$1$個を取り出し,そのボールに書かれた数を$p$とする.次に,箱の中の$19$個のボールから$1$個を取り出し,そのボールに書かれた数を$q$とする.このとき,次の確率を求めよ.

(1)$\log_{10}(p+q)=1$となる確率
(2)$\log_{10}p>\log_{10}q$となる確率
(3)$\log_pq>2$となる確率
(4)$2 \log_pq$が整数となる確率
富山県立大学 公立 富山県立大学 2013年 第3問
$x \geqq 0$とする.関数$f(x)=e^{-2x^3}$,$g(x)=xe^{-x^3}$について,次の問いに答えよ.ただし,$\displaystyle \lim_{x \to \infty}g(x)=0$は証明なしに用いてよい.

(1)導関数$f^\prime(x)$を求めよ.
(2)$y=g(x)$の増減,極値および変曲点を調べて,そのグラフの概形をかけ.
(3)$a \geqq 0$とし,曲線$y=g(x)$と$x$軸および$2$直線$x=a$,$x=a+1$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積を$V(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty}e^{2a^3}V(a)$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。