タグ「不等号」の検索結果

267ページ目:全4604問中2661問~2670問を表示)
首都大学東京 公立 首都大学東京 2013年 第3問
$a,\ b$は$a<b$を満たす実数とする.正の整数$n$に対し,座標平面上の$(2^n+1)$個の点
\[ \mathrm{P}_k \left( a+\frac{k(b-a)}{2^n},\ \left\{ a+\frac{k(b-a)}{2^n} \right\}^2 \right) \quad \left( k=0,\ 1,\ \cdots,\ 2^n \right) \]
を考える.$X_n$を$\mathrm{P}_0$,$\mathrm{P}_1$,$\cdots$,$\mathrm{P}_{2^n}$,$\mathrm{P}_0$をこの順に結んで得られる$(2^n+1)$角形とし,$X_n$の面積を$S_n$とする.以下の問いに答えなさい.

(1)$S_1$を求めなさい.
(2)$S_2-S_1$,$S_3-S_2$を求めなさい.
(3)$S_n$を求めなさい.
大阪府立大学 公立 大阪府立大学 2013年 第3問
$2$つの曲線$C_1:y=\log x$および$C_2:y=\sqrt{ax}$を考える.ただし,$a$は正の定数である.このとき,以下の問いに答えよ.

(1)曲線$C_1$上の点$(t,\ \log t)$における接線$\ell_1$の方程式,および曲線$C_2$上の点$(s,\ \sqrt{as})$における接線$\ell_2$の方程式を求めよ.ただし,$t>0,\ s>0$である.
(2)曲線$C_1$と曲線$C_2$の両方に接する直線が存在しないための$a$の値の範囲を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第4問
関数$f_n(x) (n=1,\ 2,\ \cdots)$を

$f_1(x)=x,$
$\displaystyle f_n(x)=x+\frac{e}{2}\int_0^1 f_{n-1}(t)e^{x-t} \, dt \quad (n=2,\ 3,\ \cdots)$

によって定める.このとき,以下の問いに答えよ.

(1)$f_2(x)$を求めよ.

(2)$a_n=\int_0^1 f_n(t)e^{-t} \, dt$とおく.$n \geqq 2$のとき,$a_n$を$a_{n-1}$で表せ.

(3)$f_n(x)$を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第5問
$g(x)=\sin^3 x$とおき,$0<\theta<\pi$とする.$x$の$2$次関数$y=h(x)$のグラフは原点を頂点とし,$h(\theta)=g(\theta)$を満たすとする.このとき,曲線$y=g(x) (0 \leqq x \leqq \theta)$と直線$x=\theta$および$x$軸で囲まれた図形の面積を$G(\theta)$とおく.また,曲線$y=h(x)$と直線$x=\theta$および$x$軸で囲まれた図形の面積を$H(\theta)$とおく.このとき,以下の問いに答えよ.

(1)$H(\theta)$を求めよ.

(2)$\displaystyle G(\theta)=\frac{1}{3}(1-\cos \theta)^2(2+\cos \theta)$を証明せよ.

(3)$\displaystyle \lim_{\theta \to +0}\frac{G(\theta)}{H(\theta)}$を求めよ.
九州歯科大学 公立 九州歯科大学 2013年 第1問
次の問いに答えよ.

(1)頂点間の距離が$24$であり,焦点が$(20,\ 0)$と$(-20,\ 0)$である双曲線の方程式を求めよ.
(2)初項を$a_1=4$とする数列$\{a_n\}$と初項を$b_1=1$とする数列$\{b_n\}$に対して,$c_n=\sqrt{a_nb_n}$,$\displaystyle d_n=\sqrt{\displaystyle\frac{a_n}{b_n}}$とおく.ただし,$a_n>0$,$b_n>0$とする.数列$\{c_n\}$が公差$2$の等差数列となり,数列$\{d_n\}$が公比$3$の等比数列となるとき,$a_5$と$b_5$の値を求めよ.
(3)関数$f(x)=Ax^5+Bx^4+Cx^3+Dx^2+Ex+F$が
\[ f(-x)=-f(x),\quad \lim_{x \to \infty}\frac{f(x)}{x^3}=6,\quad \int_0^1 f(x) \, dx=\frac{1}{2} \]
をみたすとき,定数$A,\ B,\ C,\ D,\ E,\ F$の値を求めよ.
九州歯科大学 公立 九州歯科大学 2013年 第3問
$\displaystyle y=x^2-4x+5+\frac{1}{x^2-4x+5}$とおくとき,次の問いに答えよ.ただし,$\displaystyle \frac{3}{2} \leqq x \leqq 3$とする.

(1)$y$の最大値$M$と最小値$m$の値を求めよ.
(2)$t=x^2-4x+5$とおくとき,$\displaystyle z=t^3-6t^2+12t-12+\frac{12}{t}-\frac{6}{t^2}+\frac{1}{t^3}$を$y$を用いて表せ.
(3)$z$の最大値$N$と最小値$n$の値を求めよ.
(4)$K(\log_{64}M+\log_{64}m-\log_{64}N-\log_{64}n)=1$をみたす自然数$K$の値を求めよ.
九州歯科大学 公立 九州歯科大学 2013年 第2問
曲線$y=\sin x$上の点$\mathrm{P}(\theta,\ \sin \theta)$における曲線の接線$\ell_1$と$x$軸との交点を$\mathrm{K}$とする.また,点$\mathrm{P}$から$x$軸へ下した垂線$\ell_2$と$x$軸との交点を$\mathrm{H}$とする.このとき,次の問いに答えよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.

(1)接線$\ell_1$を$y=Ax+B$とおくとき,$A$と$B$を$\theta$を用いて表せ.
(2)$\triangle \mathrm{PKH}$の面積$S$を$\cos \theta$を用いて表せ.
(3)$S=1$となる$\cos \theta$の値を求めよ.
(4)座標平面の原点を$\mathrm{O}$とする.また,曲線$y=\sin x$と二つの線分$\mathrm{OH}$,$\mathrm{PH}$で囲まれた図形の面積を$T$とする.$S:T=3:2$となる$\theta$の値を求めよ.
首都大学東京 公立 首都大学東京 2013年 第3問
原点を$\mathrm{O}$とする座標平面で,関数$y=\sqrt{x^2-1} (x \geqq 1)$のグラフを$C$とする.また,$t>1$を満たす実数$t$に対し,直線$x+y=t$と$C$との交点を$\mathrm{P}$,直線$x+y=t$と$x$軸との交点を$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)線分$\mathrm{PQ}$の長さ$f(t)$を求めなさい.
(2)次の極限値を求めなさい.
\[ \lim_{n \to \infty}\sum_{k=1}^n f \left( 1+\frac{k(t-1)}{n} \right) \frac{t-1}{\sqrt{2}n} \]
(3)線分$\mathrm{OP}$,$x$軸および$C$で囲まれる図形の面積を$S$とする.$S$を用いて点$\mathrm{P}$の座標を表しなさい.
大阪府立大学 公立 大阪府立大学 2013年 第2問
次の式で定められる数列$\{a_n\}$について,以下の問いに答えよ.
\[ a_1=5,\quad a_{n+1}=\frac{a_n}{2}+\frac{8}{a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)すべての自然数$n$に対して$a_n>4$が成り立つことを示せ.
(2)すべての自然数$n$に対して$a_{n+1}<a_n$が成り立つことを示せ.
(3)すべての自然数$n$に対して$\displaystyle a_n-4 \leqq \frac{1}{2^{n-1}}$が成り立つことを示せ.
大阪府立大学 公立 大阪府立大学 2013年 第4問
以下の問いに答えよ.

(1)$a,\ c$を実数の定数とする.$a>0$のとき,方程式$2x^3-3ax^2=c$の相異なる実数解の個数を求めよ.
(2)$3$次関数$y=x^3-3x$のグラフを$G$とする.$x$座標が正である座標平面上の点$\mathrm{P}(a,\ b)$を通る$G$の接線が$3$本存在するための,$a,\ b$の条件を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。