タグ「不等号」の検索結果

261ページ目:全4604問中2601問~2610問を表示)
青山学院大学 私立 青山学院大学 2013年 第5問
$a>1$とする.関数$\displaystyle f(x)=\frac{e^x}{e^x+a}$について,次の問に答えよ.

(1)$y=f(x)$のグラフは変曲点をただ$1$つもつ.この変曲点の座標を$a$を用いて表せ.
(2)$(1)$で求めた変曲点を通り,$y$軸に平行な直線を$\ell$とする.$y=f(x)$のグラフと$x$軸,$y$軸および直線$\ell$で囲まれた図形の面積$S$を$a$を用いて表せ.
(3)極限$\displaystyle \lim_{a \to \infty} S$を求めよ.
青山学院大学 私立 青山学院大学 2013年 第1問
不等式
\[ (\log_3 x)^2+3 \log_x 81<13 \]
の解は
\[ \frac{[ア]}{[イ][ウ]}<x<[エ],\quad [オ]<x<[カ][キ] \]
である.
青山学院大学 私立 青山学院大学 2013年 第3問
$\mathrm{AB}=\mathrm{AC}=1$,$\displaystyle \angle \mathrm{BAC}=\frac{\pi}{2}$を満たす直角二等辺三角形$\mathrm{ABC}$について,辺$\mathrm{AC}$上に点$\mathrm{D}$をとり,辺$\mathrm{AB}$と平行で点$\mathrm{D}$を通る直線を$\ell$とする.$\mathrm{AD}=t$とし,$\displaystyle 0<t \leqq \frac{1}{2}$のとき,三角形$\mathrm{ABC}$を直線$\ell$のまわりに$1$回転させてできる回転体の体積を$V(t)$とする.

(1)$V(t)$を$t$を用いて表せ.
(2)$t$が$\displaystyle 0<t \leqq \frac{1}{2}$の範囲を動くとき,$V(t)$の最小値を求めよ.
青山学院大学 私立 青山学院大学 2013年 第4問
$a$を正の定数とし,関数 \makebox{$y=a \cos x$} \ $\displaystyle \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを$C_1$,関数 \makebox{$y=\sin x$} \ $\displaystyle \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを$C_2$とする.

(1)$C_1$と$C_2$の交点の$x$座標を$\theta$とするとき,$\sin \theta$と$\cos \theta$を$a$を用いて表せ.
(2)$C_1$と$x$軸,$y$軸で囲まれた図形が,$C_2$によって面積の等しい$2$つの部分に分かれるとする.このとき,$a$の値を求めよ.
青山学院大学 私立 青山学院大学 2013年 第5問
次の問に答えよ.

(1)不定積分$\displaystyle \int te^t \, dt$を求めよ.
(2)$0 \leqq a \leqq 1$を満たす定数$a$について,定積分$\displaystyle S=\int_0^1 |t-a|e^t \, dt$を$a$を用いて表せ.
(3)$a$が$0 \leqq a \leqq 1$の範囲を動くとき,$S$を最小とするような$a$の値を求めよ.
早稲田大学 私立 早稲田大学 2013年 第1問
次の問に答えよ.

(1)$2$つのサイコロを同時にふるとき,出た目の和が$n$である確率を$P_n$とする.自然数$n (2 \leqq n \leqq 12)$に対して
\[ P_n=\frac{[ア]-|n-[イ]|}{[ウ]} \]
である.
(2)整数$p,\ q$に対して,多項式
\[ f(x)=2x^4+(p+2q)x^3+(pq+4)x^2+(2p+2)x+p \]
を考える.$f(0)$,$f(1)$,$f(2)$がすべて素数のとき,$p=[エ]$,$q=[オ]$である.
早稲田大学 私立 早稲田大学 2013年 第2問
あるスポーツの試合において,$\mathrm{A}$,$\mathrm{B}$の$2$チームが対戦し,先に$3$回勝った方が優勝とする.$1$回の試合で$\mathrm{A}$が勝つ確率を$p$,$\mathrm{B}$が勝つ確率を$1-p$とする.

(1)$\displaystyle p=\frac{1}{3}$のときに,ちょうど$4$試合目で優勝チームが決まる確率は$\displaystyle \frac{[カ]}{[キ]}$である.

(2)ちょうど$N$試合目で優勝チームが決まるとする.このとき,$0 \leqq p \leqq 1$の範囲で$N$の期待値の最大値は$\displaystyle \frac{[ク]}{[ケ]}$である.
早稲田大学 私立 早稲田大学 2013年 第4問
$0<t<3$とする.曲線$C:y=f(x)=|x^2-3x|+x-3$と曲線$C$上の点$(t,\ f(t))$における接線$\ell$とで囲まれた$2$つの部分の面積の和は,$\displaystyle t=\frac{[タ]}{[チ]}$のとき最小となり,その値は$[ツ] \sqrt{[テ]}+[ト]$である.
早稲田大学 私立 早稲田大学 2013年 第3問
次の条件を満たしている正の整数$a,\ b$,正の奇数$c$の組$(a,\ b,\ c)$を考える.
\[ 2^a=(4b-c)(b+c) \]
次の設問に答えよ.

(1)$b=13$のとき,$a,\ c$の値を求めよ.
(2)$a \leqq 2013$である組$(a,\ b,\ c)$の個数を求めよ.
早稲田大学 私立 早稲田大学 2013年 第1問
放物線$C:y^2=4px (p>0)$の焦点$\mathrm{F}(p,\ 0)$を通る$2$直線$\ell_1$,$\ell_2$は互いに直交し,$C$と$\ell_1$は$2$点$\mathrm{P}_1$,$\mathrm{P}_2$で,$C$と$\ell_2$は$2$点$\mathrm{Q}_1$,$\mathrm{Q}_2$で交わるとする.次の問に答えよ.

(1)$\ell_1$の方程式を$x=ay+p$と置き,$\mathrm{P}_1$,$\mathrm{P}_2$の座標をそれぞれ$(x_1,\ y_1)$,$(x_2,\ y_2)$とする.$y_1+y_2$,$y_1y_2$を$a$と$p$で表せ.
(2)$\displaystyle \frac{1}{\mathrm{P}_1 \mathrm{P}_2}+\frac{1}{\mathrm{Q}_1 \mathrm{Q}_2}$は$\ell_1$,$\ell_2$のとり方によらず一定であることを示せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。