タグ「不等号」の検索結果

256ページ目:全4604問中2551問~2560問を表示)
安田女子大学 私立 安田女子大学 2013年 第2問
定価が$1$個$60$円の商品がある.この商品を定価と同じ価格で販売したところ,$1$日の売り上げ個数は$1500$個であった.このとき,次の問いに答えよ.

(1)この商品を定価以上の価格で販売したところ,$1$円値上げするごとに$1$日の売り上げ個数が$15$個の割合で減少した.定価からの値上げ額を$x$円,$1$日の売り上げを$y$円として,$y$を$x$の関数で表せ.ただし,$x \geqq 0$,$y \geqq 0$とする.
(2)$(1)$の場合において,この商品の価格がいくらのとき,$1$日の売り上げが最高になるか求めよ.また,そのときの売り上げがいくらになるか求めよ.
(3)この商品を定価以下の価格で販売したところ,$1$円値下げするごとに$1$日の売り上げ個数が$50$個の割合で増えた.このとき,$(2)$で求めた売り上げの最高額よりも$1$日の売り上げが高くなるような価格の範囲を求めよ.
安田女子大学 私立 安田女子大学 2013年 第4問
$1$から$6$の目が等確率で出る$1$個のサイコロを$2$回続けて投げて,$1$回目に出た目を$x$,$2$回目に出た目を$y$とする.このとき,次の問いに答えよ.

(1)$xy=1$を満たす確率を求めよ.
(2)$xy<4$を満たす確率を求めよ.
(3)$y<-x^2+6x-5$を満たす確率を求めよ.
安田女子大学 私立 安田女子大学 2013年 第3問
次の問いに答えよ.

(1)放物線$y=x^2+ax+b$が$2$点$(-2,\ 23)$,$(3,\ -2)$を通るとき,定数$a,\ b$の値を求めよ.
(2)$(1)$の放物線と直線$y=-x+3$の$2$つの交点の座標を求めよ.
(3)$(2)$の$2$つの交点の$x$座標をそれぞれ$m,\ n$とする.ただし,$m<n$とする.放物線$y=x^2-6x-k^2+4k+5$が$m \leqq x \leqq n$の区間において,常に$y<0$の部分にあるような定数$k$の値の範囲を求めよ.
安田女子大学 私立 安田女子大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{2+\sqrt{2}}{\sqrt{2}+1}$の分母を有理化して簡単にせよ.
(2)$x^3+x^2y-x^2z-xy^2-y^3+y^2z$を因数分解せよ.
(3)$1$冊$180$円のノートと$1$本$80$円の鉛筆をいくつか買い,代金の合計を$900$円以下にしたい.買い方は何通りあるか求めよ.ただし,ノートは$2$冊以上,鉛筆は$1$本以上買うものとする.
(4)$k$を実数とする$2$次方程式$x^2+x+k=0$の解が$\sin \theta$,$\cos \theta$で表されるとき,$k,\ \theta$の値を求めよ.ただし,$0 \leqq \theta<2\pi$とする.
(5)$3 \overrightarrow{a}+\overrightarrow{b}=(1,\ 0)$,$\overrightarrow{a}-2 \overrightarrow{b}=(0,\ 1)$であるとき,$(3,\ -1)$を$\overrightarrow{a}$および$\overrightarrow{b}$を用いて表せ.
吉備国際大学 私立 吉備国際大学 2013年 第1問
次の問いに答えよ.

(1)$x^2+ax+2x+3a-3$を因数分解せよ.
(2)男$4$人,女$2$人が一列に並ぶとき,女$2$人が隣接する並び方は$[ ]$通り.
(3)$x^2-11x+1>0$を解け.
(4)$\displaystyle \tan \theta=\frac{1}{2}$のとき,$\sin \theta=[ ]$である.
(5)循環小数$1. \dot{2} \dot{1}$を分数で表せ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第2問
負の実数$a,\ b$は,$u$についての$2$次方程式$u^2-su+t=0$の解で,$a^3+b^3-2ab=-4$を満たしている.このとき,設問に答えなさい.

(1)$a+b,\ ab$および$a^3+b^3-2ab$を$s,\ t$を用いて表すと,
\[ a+b=[$1$],\quad ab=[$2$],\quad a^3+b^3-2ab=[$3$] \]
となる.
(2)以下の$s,\ t$に対する記述(イ),(ロ),(ハ)のうち正しいものを選び,その記号を解答欄に記入しなさい.

\mon[(イ)] $s,\ t$は$s>0$,$t>0$,$s^2-4t \geqq 0$を満たしている.
\mon[(ロ)] $s,\ t$は$s<0$,$t>0$,$s^2 \geqq 4t$を満たしている.
\mon[(ハ)] $s,\ t$は$s<0$,$t>0$,$s^2<4t$を満たしている.

(3)$a+b$のとりうる値の範囲を求めなさい.
大阪歯科大学 私立 大阪歯科大学 2013年 第2問
$2$次関数$y=2x^2-4ax+a^2+a$の$0 \leqq x \leqq 3$における最小値が$0$となるような定数$a$の値をすべて求めよ.
大阪歯科大学 私立 大阪歯科大学 2013年 第3問
$a,\ p$を定数とする.曲線$C_1:x^2+y^2=2 (x \geqq 0,\ y \geqq 0)$と曲線$C_2:y=a(x-p)^2$は点$(1,\ 1)$において接線が直交している.このとき,以下の問に答えよ.

(1)$a$と$p$の値を求めよ.
(2)曲線$C_1,\ C_2$および$x$軸で囲まれた部分の面積を求めよ.
杏林大学 私立 杏林大学 2013年 第1問
座標平面上の点$(x,\ y)$に対し,
\[ y=2 \sqrt{-x^2+4x-3}+1 \cdots\cdots① \]
が成立している.

(1)$①$の定義域は$[ア] \leqq x \leqq [イ]$,値域は$[ウ] \leqq y \leqq [エ]$である.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を$([オ],\ [カ] \pm \sqrt{[キ]})$にとると,$①$のグラフ上の任意の点$\mathrm{P}$に対し,常に$\mathrm{PA}+\mathrm{PB}=[ク]$が成り立つ.
(3)直線$y=x+k$が$①$のグラフと共有点を持つような定数$k$の範囲は
\[ [ケコ] \leqq k \leqq [サシ]+\sqrt{[ス]} \]
である.
(4)不等式$x-1 \leqq 2 \sqrt{-x^2+4x-3}+1$の解は
\[ [セ] \leqq x \leqq [ソ]+\frac{[タ]}{[チ]} \sqrt{[ツ]} \]
である.
杏林大学 私立 杏林大学 2013年 第2問
動点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は,時刻$t=0$においてすべて点$\mathrm{A}(3,\ 0)$にあり,原点$\mathrm{O}(0,\ 0)$を中心とする半径$3$の円周上を反時計まわりに移動する.時刻$t$において$\angle \mathrm{AOP}=t$,$\angle \mathrm{AOQ}=2t$,$\angle \mathrm{AOR}=3t$である.以下,$t$は$0<t<\pi$を満たすものとする.

(1)時刻$t$において,三角形$\mathrm{PQR}$の面積$S$は,
\[ S=[ア] \sin t-\frac{[イ]}{[ウ]} \sin \left( [エ] t \right) \]
と表わせる.面積$S$は$\displaystyle t=\frac{[オ]}{[カ]} \pi$のとき最大値$\displaystyle \frac{[キク]}{[ケ]} \sqrt{[コ]}$をとる.

(2)点$\mathrm{R}$から直線$\mathrm{PQ}$に下ろした垂線の足を$\mathrm{H}$とする.時刻$t$において,行列
$\left( \begin{array}{cc}
\cos \displaystyle\frac{3}{2}t & \sin \displaystyle\frac{3}{2}t \\
-\sin \displaystyle\frac{3}{2}t & \cos \displaystyle\frac{3}{2}t
\end{array} \right)$で表わされる$1$次変換により,点$\mathrm{H}$は
\[ \left( 3 \cos \left( \frac{[サ]}{[シ]} t \right),\ 3 \sin \left( \frac{[ス]}{[セ]} t \right) \right) \]
に移動する.$\mathrm{OH}^2$は$\displaystyle \cos t=\frac{\sqrt{[ソ]}}{[タ]}$を満たす時刻$t$において最大値$[チ]+[ツ] \sqrt{[テ]}$をとる.
(3)時刻$t$の変化にともない,線分$\mathrm{PR}$の中点が描く軌跡を$C$とする.点$\mathrm{O}$を極とし,半直線$\alpha \overrightarrow{\mathrm{OA}} (\alpha \geqq 0)$を始線としたとき,曲線$C$の極方程式は,極座標$(r,\ \theta)$を用いて
\[ r=[ト] \cos \left( \frac{[ナ]}{[ニ]} \theta \right) \]
と表わされる.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。